Astrophysics / Physics / Science And Math

Type 1a: The Other Type of Supernova

Supernova 1994D

When people hear “supernova” they usually think of a star that runs out of fuel. Without the engine of nuclear fusion to heat it, the star collapses under its own weight, which triggers a huge explosion. This is a “core-collapse supernova,” one of the most energetic events in the universe. The result is usually a neutron star or a black hole. However, there’s another type of supernova, one in which a star whose nuclear fires long ago petered out is reignited, causing a catastrophic explosion. This is the type Ia supernova. We start our story with the type of

Astrophysics / Geometry / Mathematics / etc.

Speculative Sunday: Can a Black Hole Explode?

Cassiopeia A Spitzer Image

Nothing can escape the gravitational pull of a black hole, not even light. That’s why they’re, well, black. (Of course, as I’ve described before, black holes can glow very brightly, thanks to all the in-falling matter. Sometimes they even produce gamma rays. I’m also ignoring the negligible amount of Hawking radiation that black holes theoretically produce.) Once you pass the event horizon of a black hole, you cannot ever escape. Escape is simply forbidden by the laws of physics. That is, of course…if there actually is an event horizon, not just something that looks like one. Carlo Rovelli ,

Astrophysics / Physics / Relativity

The Curvature of Spacetime

Abell 2218

Spacetime is curved. We’ve all heard the line. But what does it mean? Well on the largest scales, the curvature of spacetime is abundantly clear as the warped fabric of the universe distorts images of distant objects. The image below is of the Abell 2218 galaxy cluster, taken by the Hubble Space Telescope. The cluster is very massive so it warps the spacetime around it. This warped spacetime acts as a lens so that light light coming from galaxies behind Abell 2218 is spread out much more than it should be. The result is that images of galaxies behind

History / Physics / Relativity

The Men Who Weighed Mountains

 In 1687, Sir Isaac Newton published the Philosophiæ Naturalis Principia Mathematica, his magnum opus describing the laws of motion and the secrets of the universe. One such secret is Newton’s law of universal gravitation, which states that the same gravitational force that pulls us down to the Earth holds the planets in their orbits around the sun. Indeed, every mass attracts every other mass through gravity. This means that not only are we pulled downwards towards the Earth, but we are pulled towards pieces of the Earth. We are all gravitationally attracted to mountains. In fact, this is an excellent test of Newton’s

Astrophysics / Physics / Relativity / etc.

Simulating Gamma Ray Bursts

It was the mid 1960s. The United States and the Soviet Union had recently signed the Partial Nuclear Test Ban Treaty, which forbid the detonation of nuclear weapons except underground. Since neither nation trusted the other, each was carefully monitoring the other for non-compliance. In particular, the United States feared that the soviets might be, I kid you not, testing bombs behind the moon. Vela The United States solved this problem with the Vela satellites. When a nuclear bomb goes off, it emits a short burst of gamma rays, which are rays of extremely high energy light. The Vela

Astrophysics / Physics / Science And Math

The Long Arms of the Black Hole

Black holes are incredibly messy eaters. As matter falls into a spinning black hole, that matter can be accelerated to incredible velocities and launched out the poles. In the case of the supermassive black holes at the centers of galaxies, these are the most energetic events in the universe since the Big Bang. The exact mechanism for the creation of these jets is unknown. There are two competing theories, one called the Blandford-Payne mechanism, and one called the Blandford-Znajek mechanism. The details are too fiddly to get into here, but the former has more to do with the in-falling

History / Physics / Quantum Mechanics / etc.

Spin and the Stern-Gerlach Experiment

The word “quantum” means a single share or portion. In quantum mechanics, this means that energy comes in discrete chunks, or quanta, rather than a continuous flow. But it also means that particles have other properties that are discrete in a way that’s deeply counterintuitive. Today I want to tell you about one such property, called spin, and the experiment that discovered it: the Stern-Gerlach experiment. (The goal of the original experiment was actually to test something else. But it was revealed later, after the discovery of spin by Wolfgang Pauli, that this is in fact what Stern and Gerlach were

Astrophysics / cosmology / Physics / etc.

The Universe Is an Inside-Out Star

the CMB on our sky

No, not really. But as we’ll see, it’s a useful analogy. Today we’ll learn about sound waves in the sun and how, if we imagine that the universe is the sun but inside-out, these are the same as the sound waves that filled the early universe. DISCLAIMER: This is a pedagogical exercise only! I am not claiming the universe is ACTUALLY an inside-out star or that scientists think of it as one. Sound Waves in the Sun I’m sure you won’t be surprised when I say that the sun is a complicated beast. A nuclear furnace burning at tens

Computer Related / Mathematics / numerical analysis / etc.

Tidbit: Radio Waves Bouncing Off of an F-15

I’m afraid I don’t have time to write very much this week. So instead, I leave you with a little hint of the sort of thing I’m thinking about. The above picture is from a paper I just read. It shows a simulation of radio waves bouncing off of an F-15 fighter jet. The simulation was effected by first building the jet out of many tiny pyramids linked together at the faces (shown on the left). Then, a set of five waves or so was allowed to exist inside each pyramid. When you take all of these waves together,

Uncategorized

The BICEP2 Result Was Just Dust, and That’s Okay

You may remember that about this time last year, there was a big hullabaloo because a research group from Harvard claimed that they had discovered primordial gravitational waves using BICEP2, their telescope in the South Pole. This was very exciting because, if true, the result would be extremely good evidence for a model of the early universe called cosmic inflation. (Cosmic inflation is mostly accepted by the scientific community, but it has some philosophical problems and is thus still a little bit controversial. The BICEP2 results would have ended the controversy once and for all.) Even better, the precise