So I did an interview for the “Tilting at the Universe” podcast. In it, I describe: the history of dark energy and the expanding universe, how the mystery of dark energy may be solved once we reconcile quantum mechanics and general relativity, how the astrophysics of black holes and neutron stars may help us understand quantum gravity, and how my field of numerical relativity fits in to all of this. I think I did a pretty good job of explaining what excites me about the field. So check it out. The interview is here. In the interview, I mention

# astrophysics

##### Astrophysics / Physics / Relativity / etc.

# The Black Holes that Created LIGO’s Gravitational Waves

A little over a week ago, the LIGO collaboration detected gravitational waves emitted during the in-spiral and merger of two black holes. And the world’s scientists, myself included, collectively went bananas. Last week, I attempted to summarize the event and capture some of the science, and poetry, that has us so excited. In short, gravitational waves provide us a totally new way to look at the universe. LIGO’s one detection has already provided us with a wealth of information about gravity and astrophysics. Today, I summarize some of what we’ve learned. Black Holes As We Knew Them In the

##### Astrophysics / Physics / Relativity / etc.

# The Poetry of LIGO’s Gravitational Waves

Yesterday the LIGO scientific collaboration announced that they had detected the gravitational waves from the in-spiral and merger of two black holes, shown in figure 1. It would not be an overstatement to say that this result has changed science forever. As a gravitational physicist, it is hard for me to put into words how scientifically important and emotionally powerful this moment is for me and for everyone in my field. But I’m going to try. This is my attempt to capture some of the science—and the poetry—of LIGO’s gravitational wave announcement. The Source About 1.3 billion years ago

##### Astrophysics / Physics / Relativity / etc.

# The Geodetic Effect: Measuring the Curvature of Spacetime

A couple of weeks ago, I described the so-called “classical tests of general relativity,” which were tests of early predictions of the theory. This week, I want to tell you about a much more modern, difficult, and convincing test: A direct measurement of the curvature of spacetime. It’s called the geodetic effect. This is the eighth post in my howgrworks series. Let’s get to it. We know from general relativity that gravity is a distortion of how we measure distance and duration. And that we can interpret this distortion as the curvature of a unified spacetime. When particles travel

##### Physics / Science And Math

# Book Review: Beyond the Galaxy

Earlier this year, I was asked to review Ethan Siegel’s, upcoming book Beyond the Galaxy, shown in figure 1. I got an advanced copy and dug in and I really loved what I found. With Ethan’s permission, I wanted to repost my review here so you can all read it. The Review The history of science is filled with ideas that were once compelling, but have since been ruled out by empirical evidence. Ethan Siegel’s Beyond the Galaxy understands this fundamental truth of science. With eloquence and clarity, Siegel tells us the story of the universe, from the (inferred)

##### Physics / Relativity / Science And Math

# Classical Tests of General Relativity

Last Wednesday, November 25, was the 100 year anniversary of general relativity. It was the precise day that Einstein presented his field equations, shown in figure 1, to the world. In celebration of this anniversary, today I present to you some of the early triumphs of general relativity, classical predictions of the theory that have been precisely tested and where theory has exquisitely matched experiment. This is the sixth instalment of my howgrworks series. Let’s get started. The Perihelion of Mercury Before Einstein, we believed that the motion of planets in the solar system were governed by Kepler’s laws

##### Geometry / Physics / Relativity / etc.

# Our Local Spacetime

General relativity tells us that mass (and energy) bend spacetime. And when people visualize the effect of a planet on spacetime, they usually imagine something like in figure 1, where the planet creates a “dip” in spacetime much like a “gravitational well.” But today I’m going to show you what spacetime actually looks like near a planet… and it doesn’t look anything like the common picture. This is the fifth part in my many-part series on general relativity. Here are the first four parts: Galileo almost discovered general relativity General relativity is the dynamics of distance General relativity is

##### Physics / Relativity / Science And Math

# Distance Ripples: How Gravitational Waves Work

Gravitational waves are “ripples in space time” that propagate through it like waves on water. That’s the common story and, for the most part, it’s right. But what does that mean? This is part four in my many-part series on general relativity. The first three parts introduce general relativity from the ground up. You can find them here: Galileo almost discovered general relativity General relativity is the dynamics of distance General relativity is the curvature of spacetime Okay. Without further ado, gravitational waves! Spooky Action at a Distance First, I want to help you get an intuition for why

##### Astrophysics / Physics / Science And Math

# Type 1a: The Other Type of Supernova

When people hear “supernova” they usually think of a star that runs out of fuel. Without the engine of nuclear fusion to heat it, the star collapses under its own weight, which triggers a huge explosion. This is a “core-collapse supernova,” one of the most energetic events in the universe. The result is usually a neutron star or a black hole. However, there’s another type of supernova, one in which a star whose nuclear fires long ago petered out is reignited, causing a catastrophic explosion. This is the type Ia supernova. We start our story with the type of

##### Astrophysics / Geometry / Mathematics / etc.

# Speculative Sunday: Can a Black Hole Explode?

Nothing can escape the gravitational pull of a black hole, not even light. That’s why they’re, well, black. (Of course, as I’ve described before, black holes can glow very brightly, thanks to all the in-falling matter. Sometimes they even produce gamma rays. I’m also ignoring the negligible amount of Hawking radiation that black holes theoretically produce.) Once you pass the event horizon of a black hole, you cannot ever escape. Escape is simply forbidden by the laws of physics. That is, of course…if there actually is an event horizon, not just something that looks like one. Carlo Rovelli ,