History / Physics / Relativity

The Men Who Weighed Mountains

 In 1687, Sir Isaac Newton published the Philosophiæ Naturalis Principia Mathematica, his magnum opus describing the laws of motion and the secrets of the universe. One such secret is Newton’s law of universal gravitation, which states that the same gravitational force that pulls us down to the Earth holds the planets in their orbits around the sun. Indeed, every mass attracts every other mass through gravity. This means that not only are we pulled downwards towards the Earth, but we are pulled towards pieces of the Earth. We are all gravitationally attracted to mountains. In fact, this is an excellent test of Newton’s

History / Physics / Quantum Mechanics / etc.

Spin and the Stern-Gerlach Experiment

The word “quantum” means a single share or portion. In quantum mechanics, this means that energy comes in discrete chunks, or quanta, rather than a continuous flow. But it also means that particles have other properties that are discrete in a way that’s deeply counterintuitive. Today I want to tell you about one such property, called spin, and the experiment that discovered it: the Stern-Gerlach experiment. (The goal of the original experiment was actually to test something else. But it was revealed later, after the discovery of spin by Wolfgang Pauli, that this is in fact what Stern and Gerlach were

Computer Related / Condensed Matter / History / etc.

The Boolean Circuit and Electronic Logic, Part 1

Living in a vacuum sucks. ~Adrienne E. Gusoff This is the third part in my multi-part series on how computers work. Computers are thinking machines, but they can’t do this on their own. We need to teach them how to think. And for this, we need a language of logic. In the first part of the series, I introduced this language of logic, Boolean algebra. In the second part, I described how to formulate complex logical statements using Boolean algebra. Now, in part three, I lay the groundwork for how we can implement simple Boolean logic using electronics. In

abstract algebra / History / Mathematics / etc.

International Women’s Day Spotlight: Emmy Noether

The connection between symmetries and conservation laws is one of the great discoveries of twentieth century physics . But I think very few non-experts will have heard either of it or its maker[:] Emily Noether, a great German mathematician. But it is as essential to twentieth century physics as famous ideas like the impossibility of exceeding the speed of light. It is not difficult to teach Noether’s theorem, as it is called; there is a beautiful and intuitive idea behind it. I’ve explained it every time I’ve taught introductory physics. But no textbook at this level mentions it. And