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Over the last decade, a variety of exciting applications have been found for lasers that generate ultra-

short pulses of light with durations of just a few femtoseconds, known as femtosecond lasers (fs-lasers) [1].

People now routinely measure optical frequencies [2, 3], atomic and molecular spectra, lengths, distances [4],

and displacements [5] with fs-lasers, and new applications are constantly being discovered. Pulses of such

short duration can be achieved from passively mode-locked lasers—that is, lasers in which the longitudinal

electromagnetic waves in the laser cavity, or “modes,” are locked into phase with each other [6, 7, 8, 9]. To

lock the phase of the modes, a saturable absorber—a device which absorbs some percentage of low-intensity

light, but which allows high-intensity light to pass through with reduced absorption—is used [6, 7, 8, 9].

To produce short pulse-width, high repetition-rate (many pulses per second) lasers, a saturable ab-

sorber that becomes opaque quickly after being “saturated” by light and that saturates very easily is needed

[6]. In this work, the potential for single atomic-layer graphene—a honeycomb lattice of carbon atoms only

one atom thick, which has already proven itself to be an extraordinary material [10, 11, 12, 13, 14, 15, 16, 17]—

as a saturable absorber is explored, and a method for producing high-quality graphene saturable absorbers is

developed. This high-quality graphene’s nonlinear (saturable) absorption was probed optically by differential

transmission and pump-probe measurements and the possibility of tuning graphene’s optical properties by

chemical doping is explored by Raman spectroscopy and compared to doping concentration and measure-

ments made in differential transmission and spectrophotometry. It is concluded that while graphene could

be a highly desirable saturable absorber, it is currently limited by its relatively high saturation fluence com-

pared to its damage threshold. The possibility of a graphene-based high-speed electro-optic modulator is also

briefly discussed. This work is a step in the development of graphene as a saturable absorber comparable

to but substantially cheaper than semiconductor saturable absorber mirrors (SESAMs), and towards the

development of graphene-based optical and electro-optical devices for lasers.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Mode-Locked Lasers: Their Potential and Their Challenges

Lasers which produce ultrashort pulses of light, on the order of a few femtoseconds (1 fs = 10−15

s), have become an essential part of modern scientific research [1]. Optical frequencies [2, 3], atomic and

molecular spectra, lengths, distances [4], and displacements [5] are nowadays routinely measured with fem-

tosecond lasers, or fs-lasers. People now use fs-lasers as light sources to achieve in-vivo 3D imaging of the

human retina, epidermis, and blood vessels [18]. Optical frequency combs produced by fs-lasers are used

to help probe and manipulate the quantum state of gaseous atoms and molecules [19], and in all forms

of condensed matter [20]. In astrophysics, fs lasers are used to calibrate spectrometers to unprecedented

accuracy, allowing for measurements of the Doppler shifts of stellar objects with error approximately 1 cm/s

[21, 22, 23]. In high-energy physics, ultrashort lasers might soon be commonly used for timing synchroniza-

tion in large-scale accelerators [24] and will likely play an important role in generating ultra-bright, coherent

X-ray pulses in free-electron laser facilities—which might bring several generations’ worth of improvements

to precision spectroscopy at very high energies.

As will be discussed below, femtosecond duration pulses are most often obtained from lasers passively

mode-locked by saturable absorbers [6, 7, 8, 9]. The most common type of saturable absorber, called a

Saturable Absorber Mirror (SESAM), offers a variety of design parameters to produce pulses of varying

width (in the time domain) and pulse repetition-rate, but but is grown on a crystalline substrate from
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which it cannot be removed, limiting design flexibility. Furthermore, how narrow one can make a pulse

is limited by the carrier relaxation time of the absorber. Worse, high repetition-rate lasers often slowly

damage SESAMS and severely shorten their working lifetime [25]. These three factors limit the capabilities

of SESAMs, hence the search for other absorbers. Although, as will be discussed throughout this work,

graphene may be substantially less resilient than modern SESAMs, investigating it is a step in the search

for new, higher-quality saturable absorbers.

Mode-locked lasers are also plagued by instabilities known as “Q-switching instabilities.” Q-switching

is another method of producing ultrafast high-energy pulses in a laser that uses saturable absorbers. As

the name would imply, Q-switching is a process where the quality factor of the cavity (energy stored in the

cavity divided by energy loss per round trip) rapidly switches between high values and low values. The

result is that the cavity stores light and energy while the Q factor is high before rapidly dissipating it as

a pulse of durations ranging from picoseconds to nanoseconds when the Q factor is low [6]. However, the

pulses produced by Q-switching are much less stable or consistent and the output of the laser is often noisy.

Furthermore, Q-switched lasers operate with pulse widths of a few picoseconds (ps)[6, 26]—too long for many

applications. When a laser is mode-locked by a saturable absorber, it is possible for the laser to begin Q-

switching as well, and this is usually undesirable [6]. As will be discussed much later, a possible application

of graphene in mode-locked lasers is as a component in an active feedback loop to suppress Q-switching

instabilities.

1.1.2 Graphene: The Wonder Material

Although graphene—single atomic-layer graphite—was first postulated in 1947 [27] and poor quality

graphene was produced in 1962 [28], a method to produce high-quality graphene was only developed ex-

tremely recently by Konstantin Novoselov and Andre Geim [29], who won the Nobel Prize as a result [30].

Because graphene is essentially two-dimensional (it is impossible for a real condensed matter material to get

any thinner than a single atomic layer), people considered it thermodynamically unstable and thus a mere

theoretical construct until its discovery. However, since that discovery, graphene has displayed a stunning

number of fascinating and useful properties.
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It has displayed the quantum Hall effect at room temperature [14] and the fractional quantum Hall

effect [15], a tremendously high electrical conductivity [11, 31], a universal linear optical absorption of 2.3%

through all (low-energy) frequencies of light [32], and a breaking strength two hundred times stronger than

steel [33]. It has already been used as a super-sensitive gas detector [13], an impermeable membrane [17], a

transparent electrode for touch screens [11], as a replacement for silicon in high speed integrated electronics

[12], and possibly as a critical component in many more applications. Most relevantly here, it has been

demonstrated to be a saturable absorber [34, 35, 36, 37, 38, 39, 40, 41].

As a saturable absorber, graphene looks very appealing at first glance. At low intensities, it absorbs

2.3% of incident light, independent of frequency, and at very high intensities it only absorbs about 1% of

incident light. Initially reported values for saturation fluence1 (or intensity2 depending on the model—this

will be discussed in more detail later), were comparable to SESAMs. These factors ensure that it has a

low enough loss to be feasibly used in a high-repetition-rate laser, and its high conductivity ensures a short

optical response time [35, 31].

1.1.3 Graphene and Mode-Locked Lasers

The goal of this work is to explore the possibilities of applying graphene in fs-lasers—primarily as a

more flexible and faster alternative to SESAMs that might overcome some of their limitations and secondarily

as a component in an electro-optic modulator, which is a device for suppressing Q-switching instabilities

through active feedback. Graphene is more flexible than SESAMs because a SESAM must have a crystaline

substrate and faster because the interband relaxation time for electrons in the material is much shorter.

Interband relaxation is described in chapter 2. At this time, a prototype electro-optic modulator has been

constructed through the hard work of Chien-Chung Lee, Wanyan Xie, and Seiya Suzuki. The author was

not a part of its development. However, the investigations of graphene’s potential as a saturable absorber

herein are related to its potential as a component in the modulator.
1 Fluence is energy per unit area. Saturation fluence is thus the energy per area on an absorber when the absorption is e−1

its initial value.
2 Intensity is power per unit area, where power is energy per unit time.
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1.2 Overview

First, the necessary background information—the physics of mode-locking, saturable absorbers, and

graphene—will be covered. Next, the characterization of pristine (unmodified except for transfer to an

optically acceptable substrate) graphene as a saturable absorber by differential transmission and pump-

probe techniques will be described. Then, using the experimental techniques developed in the previous

section, the optimization of growth of graphene by chemical vapor deposition and subsequent wet transfer

will be discussed. After covering pristine graphene, the tuning of graphene’s linear absorption by chemical

doping and its characterization by differential transmission, spectrophotometry, and Raman spectroscopy

will be discussed, the author’s major contribution being in Raman spectroscopy. Finally, this work will

conclude with a summary of results and a brief discussion of the next steps: both those that have been taken

and those still waiting for brave minds.



Chapter 2

General Background

2.1 The Mechanics of Mode-Locking in Brief

Figure 2.1: The 3 lowest-energy electromagnetic standing waves, or modes, allowed in a simple laser cavity.
Usually these modes oscillate at random phases to each other, interfere and average out across the laser cavity.
However, when the relative phase between the modes is set just right, they can constructively interfere to
form intense pulses and destructively interfere everywhere else. x-axis is position, y-axis is real part of the
electric field.

Stable ultrafast optical pulses are obtained from mode-locked lasers—that is, lasers in which the

longitudinal standing electromagnetic waves in the laser cavity, or “modes,” are locked into phase with each

other by passive means [6, 7, 8, 9]. As shown in figure 2.1, an optical cavity, which in its simplest form is a

pair of parallel mirrors facing each other, allows only a half-integer number of wavelengths in a standing wave

inside it. The number of wavelengths in a specific wave is known as the “wave number,” or “mode number.”

Which allowed modes actually exist in a cavity depends on the gain crystal of the laser, which amplifies
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the light. All waves allowed by the gain crystal and the cavity length can exist in a cavity at once and,

without mode-locking, their relative phases oscillate such that they interfere with each other and average

out to a constant intensity. However, when a laser is mode-locked, this phase is fixed such that the modes all

constructively interfere with each other at regular intervals, producing extremely short high-intensity pulses,

and destructively interfere with each other to “cancel out” at all other times [6, 7, 8, 9].

A laser can be mode-locked by placing a material inside the laser cavity that absorbs a (proportionally)

large percentage of light at low intensities, but allows higher intensity light to pass through with reduced

absorption; such a material is called a saturable absorber. When a laser is not mode-locked, the intensity of

the light that bounces around the cavity fluctuates semi-randomly due to the constructive and destructive

interference between allowed modes. A saturable absorber placed in the cavity will attenuate the higher

intensity fluctuations to a lesser degree than the lower intensity ones. After many such attenuations, the low

intensity fluctuations are absorbed away entirely and a pulse train forms. Even then, the saturable absorber

improves the pulses.

As shown in figure 2.2, the low-intensity leading and trailing parts of each pulse are attenuated more

strongly than its high-intensity pulse center. This makes the newly formed pulses shorter and shorter over

several iterations until a pulse-width of just a few femtoseconds is attained. The width of this pulse then

depends on the gain bandwidth of the gain material and on the response time of the saturable absorber.

The more frequencies that the gain material produces in a laser (i.e., the more modes generated inside the

laser cavity), the narrower a pulse can be. Similarly, as a general trend, the faster a saturable absorber can

respond to light, the shorter the pulse can be [6, 7, 8, 9].

Figure 2.2: When passing through a saturable absorber, the low-intensity “wings” of a pulse experience
higher loss than the intense pulse center. This causes the duration of the pulse to shrink. Taken from [37].
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There are three broad classes of saturable absorber: active saturable absorbers, Kerr lens saturable

absorbers, and semiconductor saturable absorbers. Active saturable absorbers control the total loss in a laser

cavity by optoelectronics. For an active saturable absorber, the loss increase or decrease is often effected in

one of three ways: by an acousto-optic modulator (AOM)—a device which takes advantage of the pressure-

dependence of the index of refraction of certain materials—which defocuses the undesired low-intensity light

so that it escapes the laser cavity, by an electro-optic modulator (EOM)—a device with an optical absorption

dependent on an applied voltage—or, in the case of solid-state lasers, by controlling the energy of the pump

laser which feeds power into the laser cavity. Because active saturable absorbers are limited by electronic

response time, they produce the widest pulses [6]. However, for fast saturable absorbers, active electronic

feedback can stabilize a laser mode-locked by another saturable absorber without affecting pulse formation.

Kerr lens saturable absorbers take advantage of the optical Kerr effect, which is the second-order term

in a Taylor expansion of a given material’s index of refraction in terms of intensity:

n = n0 + nKerrI, (2.1)

where n is the index of refraction of the material, n0 is the linear term of the index of refraction (usually

considered the index of refraction), nKerr is the first order term of the index of refraction, and I is the

intensity of light shining on the material. For Kerr-lens mode-locked lasers, an aperture of some sort is

placed in the cavity. Then, by taking advantage of the Kerr effect, a high-intensity pulse center can be

allowed to self-focus through the Kerr lens material so that it passes through the center of the aperture with

minimal loss, while the low-intensity pulse “wings” are blocked because they do not strongly interact with

nKerr. Because the optical Kerr effect responds to light near instantaneously, Kerr-lens model-locked lasers

produce the shortest pulses of any mode-locked laser. However, because Kerr-lens mode-locking requires

careful alignment of the cavity so that the self-focusing gives high-intensity light more gain, Kerr-lens mode-

locked lasers are very sensitive to environmental fluctuations and can become unstable over time [6].

Semiconductor saturable absorbers, which will be the focus (no pun intended) here, are materials

with significant second order and higher terms in their Taylor expansion of absorption in terms of incident
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intensity:

A(I) = A0 +A1I +A2I
2 + ...

= A0 +
∞∑
i=1

AiI
i, (2.2)

where A0, A1, etc. are the absorption coefficients and I is incident intensity. For reasons discussed below, A1,

A2, A3, etc. (referred to as Ai from now on) are negative and A0 is positive. Because Ai is often extremely

small, the higher order terms only appear at high intensities. For this reason, saturable absorption in

semiconductors is also referred to as nonlinear absorption, while A0 is referred to as linear absorption. As

will be discussed later, assuming a continuous beam of light and weak saturable absorption, this Taylor series

can sometimes be approximated as

A(I) =
A0

1 + I
I0

, (2.3)

where I0 is a scale of how quickly saturable absorption becomes important. It is usually an extremely large

value. The above form of saturable absorption is only valid when it is reasonable to speak about intensity

with regards to a saturable absorber. In the case of extremely short optical pulses, a saturable absorber

will only see the average over the energy of the entire pulse and it makes more sense to describe saturable

absorption as the Taylor series of absorption in terms of the fluence of the pulse. The Taylor series is

analogous:

A(F ) = A0 +A1F +A2F
2 + ...

= A0 +
∞∑
i=1

AiF
i, (2.4)

where A0 is the linear absorption coefficient and the Ais are the analogous coefficients to make the absorption

of a material scale correctly with fluence.

How quickly a semiconductor saturable absorber responds to light is related to the electronic trans-

port properties of the material. For this reason, the pulse width produced by a laser mode-locked by a

semiconductor saturable absorber depends strongly on the semiconductor material chosen. The pulse width

is often narrower by several orders of magnitude than that produced by an active saturable absorber but

wider than that produced by a Kerr-lens saturable absorber. Semiconductor saturable absorbers also quench
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Q-switching instabilities, but they do so less strongly and reliably than systems with active feedback [6].

2.2 The Physics of Semiconductor Saturable Absorbers

Figure 2.3: The band structure of two common bulk semicondoctors: (left) silicon and (right) gallium
arsenide. x-axis is wave vector, k = p/~. y-axis is energy. Image reproduced from [42].

2.2.1 Band Structure

To understand how nonlinear absorption works in a semiconductor saturable absorber, one must first

understand a little bit about semiconductor physics. Quantum mechanics tells us that electrons in a material

are restricted to discreet energies and momenta, called states [43, 44]. In real systems, there are usually so

many allowed states, with so small a difference between them, that one can approximate them as continuous

manifolds1 of allowed energy and momentum, or bands [45]. We usually plot bands as the energy of allowed

states as a function of momentum, E(P̄ ). Figure 2.3 shows a two-dimensional plot of the band structure of

some common semiconductors. In theory, every material has infinitely many bands that can overlap, touch

at one point, or be separated by a “bandgap” (also referred to as a “band gap”), a range of energy where

there are no allowed states.2 However, most of these bands exist at such high energies that any electron

in them would escape the material entirely. As such, usually only the two lowest-energy bands are relevant.

The lowest energy band is called the “valence band,” and the second lowest, the “conduction band.” The

space which these bands live in is called the first “Brillouin zone,” which is the set of momenta corresponding
1 A manifold is the generalization of a curve, surface, or volume. It is a continuous set of points in an arbitrary number of

dimensions.
2 In a bulk crystal, one can think of the bandgap as the set of energies and momenta at which the electrons are sensitive to

the crystalline structure of the material and destructively interfere.
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to the primitive unit cell for a crystal in real space by a Fourier transform. The momentum associated with

the origin of the Brillouin zone is called “Γ,” and the point on the manifold associated with Γ is called the

“gamma point” [45]. We will call the point with the highest-energy in the valence band the “K point” and

the momentum associated with it K. We will call the energy associated with the K point the “Dirac point.”

Although Γ and K are standard notation, the Dirac point may not be.

As the names of the bands imply, the band structure of a material is closely related to its conductivity.

Electrons are fermions, so the Pauli exclusion principle allows only one electron per state, or per point on the

manifold of a band [43, 44]. As one adds electrons to a material, the energy of the highest energy electron

(called the “Fermi level” or “Fermi energy,” denoted εf ) becomes higher and higher. Assuming the bands

don’t overlap, then if the Fermi level of a material is at the K point, then there are no empty states for an

electron to move into without a large increase in energy compared to the energy of an individual electron

to overcome the bandgap. This means that in position space as well as in momentum space,3 there is no

place for an electron to move to if it is perturbed, and current cannot flow, even if one applies a voltage. A

material like this is said to be an “insulator,” or in an “insulating phase” [45].

If the Fermi level is somewhere in the conduction band, then there are many places for the higher-

energy electrons to go if perturbed, and thus a current of electrons flows if one applies a voltage. A material in

this state is said to be in an “electron conducting phase.” If the Fermi level is below the K point, somewhere

in the valence band, then a perturbed electron has fewer places to go than if the Fermi level were in the

conduction band. However, the electrons in the material can shuffle around to fill a “hole” in the “electron

sea.” This opens up a hole elsewhere, and a current of holes (i.e., the absences of electrons) flows if one

applies a voltage. These holes carry a positive charge because the absence of an electron means that the

positive charge from the nuclei of the atoms in the material is visible at the point of the hole. A material in

this state is said to be in a “hole conducting phase.” The further the Fermi level is from the K point, the

higher the conduction of the material is, since there are more electrons or holes to conduct [45].4

Figure 2.4 shows the various ways a material with a bandgap can insulate or conduct by using traffic
3 Position and momentum wavefunctions are related by a Fourier transform, or Plancherel’s Theorem:

f(x) = 1√
2π

R∞
−∞ F (k)eikxdk ⇔ 1√

2π

R∞
−∞ f(x)e−ikxdx [43, 44]

4 Remember that the Fermi level cannot be in the bandgap, since there are no states for the highest-energy electron to
inhabit in this region.
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on a highway as an analogy. If the material is in an insulating phase, then the Fermi level is at the K point

and all the electrons are stuck in their own states, since there are no states available to move into. This is like

a traffic jam; no car can go anywhere because there is no space. If the material is in an electron-conducting

phase, then the Fermi level is in the conduction band, and the electrons in the conduction band have many

open states to move into if perturbed slightly. This is equivalent to an empty highway. If the material

is in a hole-conducting state, then the Fermi level is below the K point, somewhere in the valence band.

Electrons don’t have much mobility because they’re still mostly crowded. However, the empty states, or

holes, can travel through a material as electrons shuffle to fill the gap under an applied field. This is like a

busy highway, where there are gaps between blocks of traffic. The cars may be moving relatively slowly, but

the gap between the cars can travel quickly in the opposite direction.

It is worth noting that this is not the only way, or even the most common way, a material can be a

conductor. If the valence and conduction bands of a material overlap, there are always many open states

for electrons to move into, and the material is a conductor. If the bandgap of a material is relatively small,

then a minor change in the Fermi level of the material can cause it to change from conducting to insulating

phase and vice-versa. Such a material is called a semiconductor. If the bandgap of a material is extremely

large, then it is often impossible for the Fermi level to pass the bandgap and go from the valence band to

the conduction band. Assuming no charge-carrying electrons are removed, then, the material is stuck in the

insulating phase. Such a material is an insulator [45].

2.2.2 The Interaction Between Light and Matter

Although saturable absorption is a complicated process, it can be completely described by the behavior

of a simple two-level system. Once the two-level system has been studied, it can serve as an analogy to the

band structure of a material, and the individual material’s nonlinear properties become apparent. Consider

a system of two energy-levels (call them E0 and E1) separated by a distance ∆E. Each level has infinitely

many states in it, so that infinitely many electrons may inhabit either energy level. It is irrelevant what

types of states these are, but for simplicity they will be said to be momentum states in a single direction.

An electron in such a state has momentum p̄ (not to be confused with power, P (t)). So there are two bands,
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Figure 2.4: The different “conduction phases” of a semiconductor material are analogous to traffic on a road.
(A) If the Fermi level is above the K point, somewhere in the conduction band, then there are many states
for electrons to occupy and they can flow smoothly, just as traffic flows smoothly on an empty road. (B) If
the Fermi level is at the K point, all of the states in the valence band are full and there is no room for motion,
just as in a traffic jam. (C) If the Fermi level is below the K point, then there are just a few empty states for
electrons to move into, and these empty states (or “holes”) can travel through the material carrying positive
charge in the opposite direction of the electron flow, just as a gap in traffic can move backwards through a
line of cars on a busy road. Road images from [46, 47, 48] respectively (top to bottom).

each at a single energy—the valence band at E0 and the conduction band at E1, with a bandgap of ∆E—and

with wave-vectors extending from k = −∞ to k =∞. The wave-vector is defined as

k̄ ≡ P̄

~
(2.5)

and it will be used here to clean things up notationally a little bit. The function P (t) will be used to refer

to instantaneous optical power. Note that in this simple example K is not well defined. All states in the

valence band are at the same energy level, so the idea of a K point has no meaning.

Let the system start in the conduction phase,5 with εf = E0. If a photon with energy6 ∆E hits

5 The system doesn’t really have insulating and conducting phases because it has infinitely many states for its electrons to
inhabit and thus electron flow is unlimited. However the terminology is useful.

6 The energy of a photon is related to its wavelength by Planck’s constant (h): E = hc
λ

, where c is the speed of light.
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the material containing this system, the photon can be absorbed with some probability, called B12. If the

photon is absorbed, its energy is transferred to one of the electrons in its ground state (with energy E0

and wave-vector k0), and the electron is excited into the conduction band (also called the electron’s excited

state). The electron also gains the momentum of the absorbed photon. However, since the momentum of an

electron is substantially greater than the momentum of a photon (at least at the relevant energies), it can

be assumed that the electron’s change in momentum is zero. So, after the photon has been absorbed, one

electron has moved from its position in the valence band to an analogous position in the conduction band.

It now has energy E1 = E0 + ∆E and the same wave-vector, k0. As one would expect, this process is called

absorption. If the energy of an incident photon matches the energy difference between the two bands (the

energy of the band gap), absorption has a probability of occurring whenever an electron is in the valence

band. However it becomes substantially more likely as the number of electrons in the valence band increases.

To first order, if the energy of an incident photon does not match that of the bandgap, absorption cannot

occur.

Now consider the reverse situation, where the system is completely in the conducting phase. In this

case, the system starts with all of its electrons in the conduction band. Note that this is a completely

unphysical situation. There are usually many more electrons in the valence band than can fit in the con-

duction band. It is also a thermodynamically unstable state, and it does not last in nature. All electrons

eventually return to the ground state through processes such as fluorescence, electron-electron scattering,

and electron-phonon, i.e., electron-lattice, scattering. However, in this hypothetical two-level system, there

is infinite space.

If a photon with energy ∆E hits the material now, rather than transferring its energy and momentum

to an electron, it has some probability of triggering a shift in an electron from the conduction band into the

valence band (again with a negligible change in momentum). If the electron does shift, it emits a second

photon with the exact same energy and momentum as the original photon. (The energy of the emitted

photon must be the same as that of the incident photon, because there is only one allowed transition for

the electron to make, and it has energy ∆E. That the momentum of the emitted photon is the same is

a substantially less intuitive result; the only way to see this is to treat a light wave as a time-dependent
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perturbation to this two-level system and calculate an approximate solution.) One photon enters the system

and two identical photons leave it. This process is called stimulated emission. Stimulated emission has a

probability of occurring whenever there is an electron in the conduction band, but it grows substantially

more likely as the number of electrons in the conduction band increases.

Figure 2.5: (A) Absorption, (B) stimulated emission, and (C) saturable absorption. In absorption, an
incident photon (represented by an arrow) excites an electron from the valence band to the conduction band
and disappears as it transfers its energy and momentum to the electron. In stimulated emission, an incident
photon causes an electron to decay from the conduction band to the valence band, emitting a photon with
the same energy and momentum as the stimulating photon; both the original photon and the emitted photon
then exit the material. In saturable absorption, a steady state between absorption and stimulated emission
is reached.

It is possible to reach a steady state between absorption and stimulated emission, where the number of

electrons excited into the conduction band by absorption is equal to the number of electrons that decay into

the valence band through stimulated emission (and other processes such as electron-electron and electron-

phonon7 scattering). This steady-state between absorption and stimulated emission is referred as “saturable

absorption,” and it is the source of the higher order terms of the absorption in terms of intensity referred to

in equations 2.2, 2.3 and 2.4. Figure 2.5 shows a graphical representation of absorption, stimulated emission,

and saturable absorption in this simple two-level system.

When the steady state for a system occurs depends on certain inherent traits of the system: the time

it takes the electrons in the conduction band to decay into the valence band without stimulated emission—

or better yet, the time it takes for the probability of stimulated emission to decrease to zero—called the

relaxation time of the absorber, τA, and the amount of energy (i.e., the number of photons) required to excite

7 A phonon is the quantization of lattice vibrations in a material—a quantized sound wave— and electron-phonon scattering
can be thought of as electrons hitting the vibrating crystal lattice.
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enough electrons into the conduction band such that the probability of absorption is 1/e that of a saturable

absorber in the insulating phase, called the saturation energy, Esat,A. In a simple two-level system, these

traits are arbitrary. In a physical semiconductor system, they are determined by the band structure.

2.2.3 The Dynamics of Saturable Absorption

To treat the saturable absorption in the time domain, some more assumptions must be made. The

following treatment of the time-dependent behavior of a saturable absorber comes from Ursula Keller [6], who

nicely summarizes saturable absorbers and their role in mode-locking. Keller’s treatment is specifically for

SESAMs, and she thus treats saturable absorbers only in the context of mirrors, which have a transmission

coefficient of T = 0. This treatment is slightly modified to be more general. These absorbers have nonzero

transmission and absorption coefficients, and the reflection coefficient is accounted for in the absorption

coefficient, since such reflected light is lost. Keller’s view can easily be recovered by setting R = T 2. Keller

calls the electric field as a function of time A(t) and does not give a name to the absorption coefficient. Here

A(t) will be defined as the absorption coefficient,

A(t) = 1− T (t), where T (t) = Iout/Iin. (2.6)

The transmission of material, T (t) can be redefined as

T (t) = e−2q(t), (2.7)

where q(t) is an arbitrary function that will be used to make T (t) come out right, such that q(0) = q0 and

T (0) = e−2q0 . Intuitively, q(t) is proportional to the number of electrons in the conduction band. Thus, the

more electrons there are in the conduction band, the less absorptive the system is. Soon, the instantaneous

optical intensity of a pulse I(t) will be discussed. It is important to note that this intuitive idea of q(t) is

only correct for a normalized optical pulse:

2
cnε0

∫
I(t)dt = 1,

where c is the speed of light, n is the index of refraction of a material, and ε0 is the vacuum permittivity.

This framework was chosen for convenience.
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One can then argue that the change in saturable absorption must depend on two components: the

rate of decay of electrons from the conduction band to the valence band—or the rate of recovery from the

steady-state—and the rate of excitation of electrons from the valence band into the conduction band—or

the rate of absorption at the moment, which is the probability of absorption times photon flux. These terms

can be combined to construct the following differential equation, called the Rate Equation,

dq(t)
dt

= −q(t)− q0
τA

− q(t)P (t)
Esat,A

, (2.8)

where P (t) is the power of some light being shone on the absorber, τA is the relaxation time of the absorber,

and Esat,A is the energy required to saturate the absorber as discussed in section 2.2.2.8 The Rate equation

is not a derived formula. Rather it is an intuitive guess at what might be a good model of the system: The

change q to first order might be some ∆q divided by some timescale, and to second order, it might be the

probability of absorption—which is proportional to power times some scaling factor: the more photons pass

through a material per second, the more likely one will be absorbed.

It is usually assumed that the light is an optical pulse with full width, half maximum (FWHM)

duration called τp. While it seems very restrictive to assume a pulse, this is actually extremely general, since

one can take the limit as τp → ∞ to find the behavior for a continuous beam of light, or construct a pulse

shape and only look at part of it to model nearly any continuous P (t).

This differential equation can be solved by integrating factors.

2.2.3.1 The General Solution

Equation 2.8 can be rearranged to take the form

q′(t) +
(

1
τA

+
P (t)
Esat,A

)
q(t) =

q0
τA
, (2.9)

where q′(t) is Newtonian notation for dq(t)
dt . This form more clearly shows that the Rate Equation is a linear

first order differential equation (ODE) of the form

q′(t) = h(t)q(t) + j(t), (2.10)

8 It is worth noting that this model breaks down at extremely large q(t)/q0, however lasers rarely operate in this regime, so
the model is usually quite accurate.
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where h(t) and j(t) can be anything in general. In this case,

h(t) =
(

1
τA

+
P (t)
Esat,A

)
and j(t) =

q0
τA
. (2.11)

To obtain a solution, equation 2.10 is multiplied by an “integrating factor,” M(t):9

M(t)q′(t) +M(t)h(t)q(t) = M(t)j(t). (2.12)

If the integrating factor is constrained such that

d

dt
M(t) := M(t)h(t), (2.13)

then the product rule reveals that

d

dt
[M(t)q(t)] = M(t)q′(t) + q(t)M ′(t) = M(t)q′(t) +M(t)h(t)q(t). (2.14)

But this is the left hand side of equation 2.10. So,

d

dt
[M(t)q(t)] = M(t)j(t)

⇒ q(t)M(t) =
∫
M(t)j(t)dt+ c

⇒ q(t) =
1

M(t)

[∫
M(t)j(t)dt+ c

]
. (2.15)

To find out what M(t) is, recall equation 2.13 and solve by separation of variables:

d

dt
M(t) = M(t)h(t)⇒ 1

M(t)
dM(t)
dt

= h(t)

⇒
∫

1
M(t)

dM =
∫
h(t)dt⇒ ln(M(t)) =

∫
h(t)dt

⇒M(t) = e
R
h(t)dt. (2.16)

Apply this method to equation 2.9, it becomes clear that

M(t) = exp
[∫

1
τA

+
P (t)
Esat,A

dt

]
= exp

[
t

τA
+

E(t)
Esat,A

]
⇒M(t) = exp

[
t

τA
+

F (t)
Fsat,A

]
, (2.17)

where the relationship that E(t) =
∫
P (t)dt, where F (t) is the energy of the pulse as a function of time and

the relationship that fluence, F is energy divided by area is used. Thus,

q(t) =
q0
τA
e−t/τAe−F (t)/Fsat,A

[∫ t

−∞
eu/τAeF (u)/Fsat,Adu+ τA

]
. (2.18)

9 Integrating factors are covered in great depth by Braun [49].
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The total intensity transmission coefficient for a single pulse is then

Tpulse =
Ipulse,out
Ipulse,in

= e−qp where qpulse =
∫ ∞
−∞

q(t)dt. (2.19)

Unfortunately, the integral over the fluence often does not exist in closed form. For instance, for a class of

lasers called “Soliton lasers,” it is very reasonable to assume a pulse shape of

P (t) = sech2(t/τ).

If this is assumed, then

F (t) = τP tanh(t/τP ),

and the integral ∫ t

−∞
e−u/τA exp

[
− τP
Fsat,A

tanh(u/τp)
]
dt

has no closed form and must be evaluated numerically. Fortunately, the exact general solution is rarely

required because most saturable absorbers fall into one of two approximate regimes. They are are either fast

saturable absorbers, or slow saturable absorbers.

2.2.3.2 Slow Saturable Absorbers

If one assumes that the duration of any optical pulse that hits the absorber is much shorter than the

relaxation time of the absorber (τp << τA), then the term in the rate equation relating to the recovery time

of the absorber is negligible, since the other term will be much larger (P (t) >> Esat,A). The rate equation

then becomes

dq(t)
dt
≈ −q(t)P (t)

Esat,A
. (2.20)

This equation is solvable in general (or at least as general as a physicist likes to be) by separation of variables.

dq(t)
dt

= −q(t)P (t)
Esat,A

⇒ 1
q(t)

dq(t)
dt

= − P (t)
Esat,A

⇒
∫ T

t=−∞

1
q(t)

dq(t)
dt

dt = − 1
Esat,A

∫ T

t=0

P (t)dt⇒
∫ q(T )

q(t)=q(0)

1
q(t)

dq = − 1
Esat,A

∫ T

t=0

P (t)dt

⇒ ln(q(t))− ln(q0) = − 1
Esat,A

∫ t

u=0

P (u)du

⇒ q(t) = q0 exp
[
− 1
Esat,A

∫ t

u=0

P (u)du
]
. (2.21)
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Note that the time-dependence of the optical pulse is averaged away. This means that it really only makes

sense to talk about the total pulse energy (or fluence as the case may be) for a slow saturable absorber.

Talking about time-dependent energy or instantaneous energy flux (intensity) does not make sense here

because the saturable absorber doesn’t “see” the pulse shape at all; it averages over the entire pulse. One

can calculate the saturation fluence of this material, the fluence at which A(Fsat) = e−1A(0), by first rewriting

the definition of the transmission coefficient and equation 2.7 in terms of fluences (remember fluence is the

integral of intensity):

Itrans(t) = T (t)Iin = e−2q(t)Iin

⇒ Ttot =

∫∞
t=0

Itrans(t)dt∫∞
t=0

Iin(t)dt
=
Ftrans
Fin

= 1− 2
Fin

∫ ∞
t=0

q(t)Iin(t)dt, (2.22)

where Itrans is the transmitted intensity, Iin is the incident intensity, Fin is the fluence of the incident pulse,

and Ftrans is the fluence of the transmitted pulse. Of course, it makes no sense to talk about intensity, rather

than fluence, for slow saturable absorbers. This can be solved by simply plugging the definition of fluence

into the integral to get

Ttot = 1− 2
Ep

∫ ∞
t=0

q(t)P (t)dt, (2.23)

where Ep is the energy of a pulse through the saturable absorber.

To simplify things further, the following approximation will be made. Since, physically, most saturable

absorbers used in mode-locked lasers have low saturation fluences (or intensities as the case may be), the

small angle approximation may be made to the transmission coefficient:

T = e−2q(t) ≈ 1− 2q(t). (2.24)

and thus the absorption coefficient for a whole pulse is

qp(Ep) =
1
Ep

∫ ∞
t=0

q(t)P (t)dt (2.25)

=
1
Ep

∫ ∞
t=0

q0 exp
[
− 1
Esat,A

∫ t

u=0

P (u)du
]
P (t)dt,

where Ep is the energy of the whole pulse. At first glance, it doesn’t seem possible to evaluate this integral

without knowing a pulse shape. However, with the help of a simple substitution and the fundamental theorem
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of calculus, the pulse shape is revealed to be irrelevant. Let

v(t) = − 1
Esat,A

∫ t

u=0

P (u)du

then by the fundamental theorem of calculus and the chain rule,

dv = − 1
Esat,A

P (t)dt⇒ dt = −Esat,A
P (t)

.

Substituting this back into qp(Ep), one finds that,

qp(Ep) = − q0
Esat,A

∫ v(∞)

v=v(0)

evdv

The limits of this integral are

v(0) = − 1
Esat,A

∫ 0

u=0

P (u)du = 0

and

v(∞) = − 1
Esat,A

∫ ∞
u=0

P (u)du = − Ep
Esat,A

,

and the integral is thus

qp(Ep) = − q0
Esat,A

∫ −Ep/Esat,A

v=0

evdv

=
Esat,A
Ep

q0

(
1− e−Ep/Esat,A

)
.

Then, note that

Fp
Fsat,A

=
Ep

Esat,A
× area

area
=

Ep
Esat,A

.

Thus,

qp(Fp) = q0
Fsat,A
Fp

(1− e−Fp/Fsat,A), (2.26)

where Fp is the fluence of a whole pulse. Note that the absorption coefficient of the slow saturable absorber

does not depend at all on the pulse shape. This is to be expected, since the absorber is averaging over the

entire pulse. The total absorption over a pulse is then

Ap(Fp) = 1− e−2qp(fp), (2.27)

and one can fit the behavior of a real slow saturable absorber to equations 2.26 and 2.27 to find its properties.
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2.2.3.3 Fast Saturable Absorbers

If the pulse duration is much longer than the relaxation time of the absorber (τp >> τA), then it

is reasonable to assume that the saturable absorber instantaneously absorbs some percentage of a given

incident power. This is equivalent to stating that dq(t)
dt = 0 and the rate equation reduces to

0 = −q(t)− q0
τA

− q(t)P (t)
Esat,A

. (2.28)

With the differential component set to zero, q(t) can be solved for algebraically:

q(t) =
q0

τA

[
1
τA

+ P (t)
Esat,A

] .
Recall that

τA
Esat,A

=
1

Psat,A
and

P (t)
Psat,A

=
I(t)
Isat,A

× area

area
=

I(t)
Isat,A

,

where I(t) is intensity of the optical pulse as a function of time, and Isat,A is the saturation intensity for the

saturable absorber. Then

q(t) =
q0

1 + IA(t)
Isat,A

. (2.29)

This is where equation 2.3 comes from. Note that, just as equation 2.26 didn’t reference intensity, equation

2.29 doesn’t reference fluence. Since a fast saturable absorber reacts instantaneously, time-averaged values

don’t make any sense in this context, and (therefore) neither do total energies. The total transmission

coefficient for a single pulse is then

Ttot = e−qp where qp =
∫ ∞
−∞

q(t)dt.

It is impossible to go any further with the fast saturable absorber without assuming a pulse shape.

Schibli et al. found that if one assumes a P (t) = sech2(ωt) pulse shape, then

qp(S) =
qs√

S(S + 1)
tanh−1

(√
S

S + 1

)
+ q0, with S =

Ip,peak
Isat,A

, (2.30)

where qs is the amplitude of qp—the total amount of saturable loss of the absorber—and Ip,peak is the peak

intensity of a pulse [50]. The transmission of the material as a function of a total pulse is then

T (S) = e−2qp(S), (2.31)

and one can fit a real fast saturable absorber to equations 2.30 and 2.31 to solve for its saturation intensity.
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2.3 Graphene

Figure 2.6: (A) Graphene’s honeycomb lattice, showing the two sublattices. Green atoms compose one
sublattice; orange atoms are compose the other. Taken from [10]. (B) Graphene’s band structure around
the first Brillouin zone. The energy where the bands meet is called the Dirac point. The 6 points where the
bands meet are called the K points, with momenta K1 through K6. (C) Graphene’s band structure near the
Dirac point for Γ1. The relationship between energy and momentum is linear here, resulting in graphene’s
2.3% universal absorption and in the electrons of graphene behaving as mass-less fermions.

2.3.1 Band Structure

Graphene is a two-dimensional crystal of carbon atoms arranged in a honeycomb lattice. There are two

sub-lattices, determined by the orientation of the bonds of the constituent carbon atoms. All the bonds in

graphene are sp2-type carbon-carbon bonds. These bonds are the strongest chemical bonds in the universe,

and partially account for graphene’s tremendous mechanical strength [51]. Figure 2.6(A) shows the two

sub-lattices of graphene. Most of graphene’s properties that are relevant to its application as a saturable

absorber come from its band structure.

The band structure of graphene was first calculated by Phillip Russel Wallace in 1947, as a step

towards calculating the band structure of graphite [27]. Wallace found that the valence and conduction

bands were defined as energy as a function of wave-vector, E(k̄), by the following equations, which were
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later re-presented by Neto et al. [52]:

E± = ±t
√

3 + f(k̄)− t′f(k̄) (2.32)

and

f(k̄) = 2 cos
(√

3kya
)

+ 4 cos

(√
3

2
kya

)
cos
(

3
2
kxa

)
, (2.33)

where kx and ky are the x and y components of an electron wave-vector respectively, a = 1.42Å is the

distance between two carbon atoms in the lattice, t ≈ 2.8 eV is the energy required for an electron to hop

from one atom in the lattice to the next one on a different sub-lattice, and t′ is the energy required for an

electron to hop from one atom to the next in the same sub-lattice. There is still some uncertainty about the

value of t′, but it has been measured to be approximately 0.1 eV [52, 53]. In this case, E(p̄) is also called

“dispersion.”

Figure 2.6(B) shows the band structure of graphene in the first Brillouin zone. Unlike most materials,

graphene has points where the bands touch, all at the same energy. These are called the “K points” and

are indexed 1 through 6, their energy is called the Dirac point, and their momenta are called K1 through

K6 respectively [52]. That the valence and conduction bands of graphene touch but do not overlap is a very

special property, since this means that graphene has no bandgap. For this reason, graphene is called a “zero

bandgap semiconductor” [52]. This property means that, no matter the energy of a photon that hits the

graphene lattice, it has a probability of being absorbed. There is always an allowed energy transition for a

charge-carrying electron in graphene.

If one takes the Taylor expansion of equations 2.32 and 2.33 near one of the K points in terms of a

parameter,

qi = k̄ −Ki, (2.34)

which represents the momentum measured relative to the k point, one finds that the band-structure can be

approximated as linear near the Dirac point [27, 52]:

E± ≈ ±
3ta
2
|q| ≡ ±vF |q|, (2.35)

where vF ≈ 1× 106m/s is the Fermi velocity—the speed that electrons are traveling through the graphene
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[52]. This linear behavior has two important consequences. The first, and the most surprising, is that the

Fermi velocity does not depend on the energy or momentum of the electron. In most materials, if one were

to make this approximation, the first-order term in the Taylor expansion would be quadratic [45, 52]:

Ẽ(p̄) =
1

2m
q2

following the standard energy-momentum relation, E = p2/2m. In this case, the Fermi velocity would

depend linearly on momentum and thus

ṽF =
k

m
=

√
2E
m
,

which depends on the energy of the electron [52]. This is significant because it implies that (for energies

below approximately 4eV) the electrons in graphene behave as if they were mass-less particles, such as

photons, with a fixed speed. This property is a substantial contributing factor to graphene’s extremely

high conductivity when it is in the conducting phase and one of the primary reasons that graphene exhibits

so many interesting behaviors [10, 54]. The other consequence of this linear behavior is graphene’s 2.3%

linear absorption for photon energies below 4eV [32]. Since the size of the gap between the bands (not the

bandgap!) and the density of states10 scale linearly with momentum, the probability of absorption stays

exactly the same for a wide range of photon energies. Figure 2.6(C) shows the band structure of graphene

near one of the K points. Near the Dirac point, graphene’s bands look like cones, called “Dirac cones,” that

touch at one point because the energy of charge-carriers scales linearly with the absolute value of momentum.

2.3.2 Ultrafast Properties

Figure 2.7 shows the saturable absorption process in graphene. Graphene starts in the insulating

phase. Because electrons are fermions, two electrons can not inhabit the same state. So, if all states in the

conduction band at an energy level +Ephoton/2, are full, then electrons in the valence band at −Ephoton/2 can

not be excited into the conduction band, where Ephoton is the energy of an incident photon. Furthermore,

because stimulated emission generates a photon of the exact same energy as the stimulating photon, it is

only possible when there is an open state for the electron to decay into Ephoton below its current energy. For

10 The density of states is a way of accounting for approximating a system as a continuous manifold. It is the number of
states per point as a function of energy and momentum.
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these reasons, when an incident photon excites an electron from the valence band into the conduction band,

that electron loses much of its energy and momentum first to collisions with other electrons—which occur

on a femtosecond timescale—and then to collisions with atomic nuclei in the crystal lattice—which occur on

a picosecond timescale—without decaying back into the valence band. This makes room for more electrons

to be excited into the conduction band and prevents the excited electrons from decaying into the valence

band through stimulated emission. Eventually, however, all lower-energy states in the conduction band are

full, and stimulated emission becomes a prominent effect. At this point the saturable absorber begins to

saturate.

Because of the two timescales for electron relaxation as described above, the relaxation time for

graphene as a saturable absorber, τA, has two components. One, τfast,A, can be approximated as though

graphene were a fast saturable absorber. This is mostly caused by electrons moving away from the relevant

energy level by electron-electron scattering within the conduction band, called “intraband” scattering, or

intraband decay [40]. Because graphene’s electrons behave as relativistic fermions (see equation 2.35),

electron-electron scattering happens very quickly, on the order of 7 fs [40]. The other component, τslow,A,

can be approximated as though graphene were a slow saturable absorber. This is mostly caused by electrons

falling into the holes they left behind in the valence band by dropping into the valence by band through

the K point [40]. This will present some difficulties when trying to find graphene’s properties as a saturable

absorber by fitting solutions to the rate equation (equation 2.8), but for simplicity, it is easiest to simply treat

graphene as a fast absorber (equations 2.28, 2.30 and 2.31). F. T. Vasko calculated the saturation intensity,

saturation fluence, and relaxation time of graphene[40], and his solutions will be used when a theoretical

value is needed.
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Figure 2.7: The saturable absorption of graphene near the Dirac point. (a) The low-energy band structure
of graphene. Blue cone is the valence band. Red cone is the conduction band. (b) a photon with energy
E = ~ω excites an electron from the valence band to the conduction band. (c) Electrons excited into the
conduction band lose energy and momentum to the crystal lattice and to electron-electron scattering; the
holes they left behind behave similarly. This allows new electrons to be excited to this same energy level
and contributes to intraband relaxation time of the absorber. (d) At high enough peak intensities and pulse
fluences, enough electrons have been excited into the valence band that there are no open states of lower
energy in the conduction band. Absorption and stimulated emission reach a steady state and the absorber
is saturated.

Figure 2.8: The saturable absorption of graphene as a function of time. Y-axis is change in transmission
over total transmission. X-axis is time delay. Graphene has two components to its saturable absorption: one
fast, the other slow. The time constant for the slow component is approximately 1.1 picoseconds. The fast
component is not resolved due to the long duration of the pulses measuring the saturable absorption (∼ 210
fs). Measurements in this figure made by Chien-Chung Lee.



Chapter 3

Methods for Measuring the Saturable Absorption of Graphene

3.1 Experimental Overview

The rate equation (equation 2.8) discussed in chapter 2 depends on three constants which are properties

inherent to a saturable absorber: the relaxation time τA, the total unsaturated loss q0, and the energy

required to saturate some finite small area of the material, Esat,A. The former can be measured by “pump-

probe” experiments, also called “time-resolved spectroscopy,” where a high-energy “pump” beam saturates

the absorber and then, after some time delay, a lower-energy “probe” beam passes through the absorber

and its intensity is measured by a photodetector. By varying the time-delay between the two beams, a

picture of the time-dependent behavior of the absorber can be developed (see figure 3.7). The latter two

properties can be determined by making extremely careful measurements of absorption as a function of

peak intensity or pulse fluence, then fitting the resulting curve to a solution to the rate equation, such as

equation 2.30. The best way to carry out this measurement is a technique called differential transmission

or differential reflectivity. This Chapter will first discuss general considerations for both pump-probe and

differential transmission techniques. Then differential transmission will be discussed in detail, as it was the

primary diagnostic technique used in this study. Finally, pump-probe spectroscopy will be discussed only

briefly, as the author did not participate in any pump-probe measurements.
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3.2 General Experimental Considerations

3.2.1 The Laser

While it is theoretically possible to see saturation in a passive saturable absorber by shining a con-

tinuous (i.e., unpulsed) beam of light on it, the intensity of the light is usually nowhere near high enough.

(Incidentally, a continuous beam of light is also called a “continuous wave,” or “CW,” and lasers emitting

CW light are said to be “CW lasers,” or in the “CW regime.”) The saturation intensity of a fast saturable

absorber is often on the order of gigawatts per square centimeter. For comparison, the Ratcliffe-on-Soar

power high-efficiency coal power plant—a plant in the United Kingdom which serves approximately two mil-

lion homes—has a peak output power of approximately 2 GW [55]. This means that the amount of energy

Ratcliff-on-Soar puts out every second would have to be focused into a circle of radius
√

2 cm to achieve the

peak intensity required to fully saturate a typical semiconductor saturable absorber. As discussed earlier,

saturation intensity is only well-defined when referring to fast saturable absorbers. However, a continuous

beam of light looks like a pulse of infinite duration, which is infinitely long compared to the relaxation time

of any physical saturable absorber. Thus, all saturable absorbers behave like fast saturable absorbers when

stimulated in the CW regime.

To achieve the high intensities required to observe saturable absorption in a fast saturable absorber—

and to observe slow saturable absorption at all—it is necessary to generate ultrashort pulses. Recall that in

the instantaneous case, intensity is the derivative of the fluence of a pulse with respect to time,

I =
d

dt
F (t). (3.1)

Thus, if the same fluence is “squeezed” into a shorter pulse, d
dtF (t) increases, and the intensity rises. The

shorter the pulse, the higher the peak intensity. For this reason, passive saturable absorbers are characterized

with mode-locked lasers with pulses ranging from approximately 10 femtoseconds for a Ti:sapphire laser to

approximately three picoseconds from disk lasers [56].

Since the most directly measurable quantity in an optics lab is the average power of a beam of light, it

is useful to be able to relate the average power of a pulsed laser to the pulse fluence and the peak intensity of a

pulse. It is assumed that the pulse shape P (t) (with units of watts), duration τP (with units of seconds), and
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pulse repetition rate frep (with units of hertz) are already well known in addition to the measured average

power, Pavg. The energy contained in a single pulse is approximately the energy the laser produces in a

second—i.e., the average power–divided by the number of pulses per second. Or, equivalently, the energy in

a single pulse is the average power divided by the repetition rate:

Ep =
Pavg
frep

(3.2)

The pulse fluence is then the energy in a single pulse divided by the area occupied by the laser beam at the

relevant spot, called the “spot size.” Assuming a TEM00 Gaussian beam (a beam with a single gaussian

peak in intensity, and the simplest solution to Maxwell’s equations in a laser cavity) with beam radius r

measured in meters, the fluence is approximately1

Fp =
Ep
πr2

=
Pavg
frepπr2

. (3.3)

To find the peak intensity of the pulse, recall that fluence can be thought of as the integral of intenstity as

a function of time, then integrate over the intensity of the pulse as a function of time, set this integral equal

to the pulse fluence, and algebraically solve for peak intensity, Ipeak. Let

I(t) = Ipeakf(t, τP ), (3.4)

where f(t, τP ) is the pulse shape as a function of time and pulse duration. Then,

Fp =
∫ ∞
t=−∞

I(t)dt = I0

∫ ∞
t=−∞

f(t, τP )dt and Fp =
Pavg
frepπr2

⇒ Pavg
frepπr2

= I0

∫ ∞
t=−∞

f(t, τP )dt

⇒ I0 =
Pavg

frepπr2
∫∞
t=−∞ f(t, τP )dt

. (3.5)

If one assumes a Gaussian pulse shape,

f(x, τp) = e−t
2/τ2

P , (3.6)

then the integral of f(x, τP ) is ∫ ∞
t=−∞

f(x, τP )dt = τP
√
π,

1 This value is only approximate because a Gaussian peak asymptotically approaches zero at large r. Thus, at any distance
from the center of the spot, the power of the beam is non-zero. However, because about 66% percent of the power of the beam
is contained in a circle of radius ω around the center of the spot, this equation is a fair approximation.
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and thus

I0 =
Pavg

π3/2frepr2τP
. (3.7)

It is important to note that τP in this equation is merely a parameter that helps define equation 3.6. It is

not the full width at half maximum2 (FWHM) parameter, τFWHM , more likely to be used to characterize a

generic pulse. In this case, the FWHM parameter is

τFWHM = 2τP
√
ln(2). (3.8)

Figure 3.1: The solid state laser used for differential transmission and pump-probe experiments. The laser
diode (LD) couples 980 nm light into the cavity and provides the energy for the mode-locked laser. The
pump light is then fed into the gain medium, erbium- and ytterbium-doped glass (Er:Yb:glass). Mode-
locking is effected by a combination of a saturable absorber mirror (SAM) placed as one end-mirror of the
cavity and by Kerr-lens mode-locking from self-focusing in the gain medium. Output light passes through a
partially-transparent output coupler (OC) placed as the other cavity end mirror.

Figure 3.1 shows the laser used for the pump-probe and differential transmission experiments. A laser

diode (980 nm wavelength) feeds high-energy light into the cavity, which is then focused through a gain

medium. The cavity is mode-locked by a combination of a saturable absorber mirror (SAM) used as one

end mirror and by Kerr-lens self-focusing through the gain medium. Output light passes through a partially

transparent end mirror called an “output coupler,” which transmits 0.4% of incident light and reflects the
2 Full width at half maximum, or FWHM refers to the distance between the two points on a symmetric curve, f(x) such

that f(x) = 1/2.



31

rest. The gain crystal is erbium- and Ytterbium-doped glass (Er:Yb:glass) with a 1.9 mm optical path length

(QX/Er, Kigre, Inc.). The SAM—which operates as a slow saturable absorber in this laser—is designed for

1550 nm light, has 1% linear absorption, 0.4% non-saturable loss, 0.6 % saturable loss, and a relaxation

time, τA, of approximately 10 ps (SAM-1550-1-X-10ps, Batope Inc.). The laser produces 1550 nm light of

approximately 16 mW average power. The pulses are approximately 200 fs in duration with a repetition

rate of approximately 86 MHz.

3.2.2 Lock-in Amplifiers

Most solid state gain mediums have very low gain, so a solid state laser cavity must have extremely

low loss. For this reason, most desirable saturable absorbers have low loss, usually between 1% and 5%.

This means that one must be able to accurately measure absorbers with a total percent absorption of 1% or

less—even about 0.1% is possible. Thus, for a measurement system designed to measure saturable absorbers

to be acceptably accurate, it must be able to resolve a change in absorption of 0.1% or better. This makes

noise a very serious issue.

Noise is unwanted data that interferes with the interpretation of results in an experiment. In other

words, it is information that is unintentionally measured. Noise can come from any number of sources, but

it often comes from the internal electronics of the detection equipment. Fortunately, noise is usually random

and doesn’t look like any sort of result from the experiment. Unfortunately, it can make actual data (known

as the signal) very difficult to read. One of the most effective methods of differentiating signal from noise is

lock-in detection. A lock-in amplifier is a device that amplifies only signals that are oscillating in-phase at a

specific frequency while cutting out all other signals in the input. This means that random noise is, for the

most part, discarded.

A mode-locked laser carries its own noise at the output. In order to use a lock-in amplifier with this

setup to test saturable absorbers, the signal must be chopped into a specific frequency. The chopping is

effected spinning a grated wheel in front of the laser beam, so that the beam is periodically blocked and

unblocked at the frequency to which the lock-in amplifier is tuned. This method drastically reduces noise

and improves measurement accuracy.
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It is important to note, however, that, a digital lock-in amplifier might show some error because of the

mode-locked laser’s repetition rate—i.e., the frequency over which a laser’s output power oscillates between

its maximum value and its minimum value. Because of this, when using a digital lock-in amplifier, it is

important to filter away the repetition rate from the detector output with a low-pass filter.

3.3 Differential Transmission

3.3.1 The Goals and Theory of Differential Transmission

From a measurement perspective, absorption as a function of peak intensity and absorption as a

function of pulse fluence are the same. As discussed in section 3.2.1, the most directly measurable quantity

on an optics bench is average power, which averages over many pulses. Assuming that the repetition rate

and pulse duration of the laser are known, it is then possible to derive the fluence or peak intensity of a

pulse. This means that the intensity and fluence response of a saturable absorber can be measured by the

same experiment and that, during measurement, there is no difference between a fast saturable absorber and

a slow one.3 The experimental technique used to measure both peak intensity and pulse fluence response

is “differential transmission” or “differential reflectivity.”

The idea of differential reflectivity is fairly simple: Shine laser light of a known intensity at a sample

saturable absorber and measure how much of the laser light the saturable absorber transmits as a percentage

of the laser’s known total intensity. By varying the intensity, one can build a picture of the saturable

absorber’s behavior (figure 3.2 shows this behavior for a slow saturable absorber). This simple idea does,

however, present some difficulties.

The greatest difficulty of differential transmission is that of accuracy. While a lock-in amplifier does

a good job of filtering out most sources of noise, coherent4 fluctuations in the laser output can interfere with

measurement. If proper care is not taken, it is not clear whether a change in power measured after a sample

comes from saturable absorption or from a change in the laser power itself. To remove this uncertainty, some
3 This is not quite true. Whether a saturable absorber behaves as a fast saturable absorber or as a slow one can depend

strongly on the duration of the pulses used to measure the absorber. However, so long as one is careful to note the measurement
regime, this is not an impairment to the reproducibility of results.

4 In this case, “coherent” refers to the fact that the phase of the laser light–and thus the noise–is locked with respect to
itself. The way the light interferes with itself (constructively or destructively) does not change with time.
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Figure 3.2: The absorption for a semiconductor saturable absorber mirror as a function of pulse fluence for
a slow saturable absorber (left: linear scale, right: log scale). Rns = 1 − e−q0 represents the non-saturable
loss of the absorber. ∆Rns is the difference between 0% loss and Rns. Rlin is the unsaturated, or linear,
loss of the absorber. Fsat is the saturation fluence, previously called Fsat,A. The curve for fast saturable
absorbers as a function of intensity looks qualitatively very similar. On the log-linear scale, the absorption
curve looks like an error function, demonstrating the exponent in the integrating factor in equation 2.17.
Plots from [26].

“trick” or technique must be devised. The “differential” in the name “differential transmission” comes from

the conceptualization of this trick. The following discussion borrows heavily from Haiml et al. [26] and from

Maas et al. [57]. However, neither Haiml et al. nor Maas et al. sufficiently describe the implementation of

differential transmission. The discussion of these important details is original and first appeared in a poster

by the author [37].

Because the noise from a laser is coherent, it is possible to subtract it away using two photodetectors;

one detector measures the intensity of light that passes through a saturable absorber sample, while the other

detector measures the coherent noise. The difference between the two detector outputs is taken, resulting

in a clean signal [26, 57]. When making a measurement, the laser beam is split in two before reaching the

sample. One beam is sent directly into a detector. This is called the “calibration beam,” and it goes into

detector (A), at the end of the “calibration arm” of the setup. The other beam is sent through the sample

before passing into a detector. This is the “sample beam,” and it goes into detector (B), at the end of the

“sample arm” of the setup.

By by measuring all data simultaneously and subtracting the outputs from the two detectors, the

coherent laser noise can be avoided. As figure 3.3 shows, this technique is not limited to time-independent
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Figure 3.3: The differential measurement technique in its most general form. A time-dependent signal with
coherent noise is subtracted from another signal with the same coherent noise, but an inverted signal. The
resulting difference is a clean signal.

signals. In the case of saturable absorbers, a time-independent output is desired, so the two signals whose

difference is taken are the same aside from a constant offset due to absorption by the sample. However, the

differentiated signals can be different, so that the resulting output signal is time-dependent.

To extract the transmission through the sample, it is necessary to perform some basic calculations.

Let A be the output from photodetector (A) and let B be the output from photodetector (B). Then the

transmission through the sample is

T =
transmitted intensity

incident intensity
≈ B

A
.

However, this equation does not take advantage of the use of two detectors. A more useful, mathematically

equivalent expression is

T ≈ 1− A−B
A

. (3.9)

While equation 3.9 increases statistical uncertainty slightly by adding a mathematical operation through

which error can be propagated,5 it drastically reduces systematic uncertainty by removing coherent noise—a

much larger source of error than statistical uncertainty. Figure 3.4 shows a schematic of the differential

transmission setup used to study graphene.

For this differential technique to work properly, one must ensure that the relationship between the

outputs from detector A and detector B accurately represents the absorption of the sample and that this

relationship does not change over the dynamic range of the experimental system. An ultrafast pulse in a
5 Recall that statistical error depends on the partial derivatives of an equation added in quadrature, which means that a

more complex formula can have additional error that does not cancel out compared to a less complex formula for the same
quantity [58].
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Figure 3.4: The differential transmission setup used to study graphene. PBS1 and PBS2: two polarization
beam splitter cubes, used as a power attenuator. BS: beam splitter, a laser output coupler is used to reduce
nonlinearity. Detector A and detector B: identical photodiodes for balanced detection. L1 and L2: focusing
and recolumnating lenses respectively. Sample: graphene on a transparent substrate, usually a microscope
slide. PBS3: polarization beam splitter cube used as a power attenuator for balancing. Chopper: mechanical
chopper used with lock-in amplifier to reject part of the laser noise. Trans-impedance amplifier: amplifies
electrically subtracted current output A−B and converts it into a voltage signal. Image from [37].

laser cavity may be as much as three orders of magnitude more intense than the ambient light in the cavity.

To measure this behavior, the intensity to which the absorber is exposed must be varied over all three of

these orders of magnitude. Unfortunately, it is difficult to control intensity accurately and continuously

over such a large range, and it is more difficult to ensure that the intensity changes in the same way for

both the sample beam and the calibration beam. The measure of how closely A and B reflect the desired

relationship will be called the “linearity” of the system. Likewise, deviation from the desired behavior is

called the “nonlinearity” of the system. These quantities can be measured by ensuring that A − B = c,

where c is some constant, when the system measures a non-saturable absorber.

When no absorber at all is being measured, it is important that A − B = 0 so that T = A/B = 1.

However, the sample beam passes through additional optical components, such as a pair of lenses to focus

light onto the absorber sample and to recollimate the light after the absorber, the beam splitter likely splits

incident light into beams with unequal optical powers. To ensure that A − B = 0, then, a variable optical
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power attenuator must be placed in the path of the calibration beam, so that B can be adjusted. Adjusting

B in this manner is called “balancing,” and a system where A − B = 0 when there is no absorber in it is

called “balanced.” The less balanced a system is, the worse the nonlinearity and the noise will be. If the

laser noise is stronger in one detector output than in the other, it will not be completely subtracted away

and will appear in any resulting measurements.

3.3.2 Implementation

One common method to control the intensity is with polarization-dependent components, such as

a half-wave plate and a polarization beam splitter (PBS), or a pair of PBSs. Polarization refers to the

direction of the electric field vectors from the light waves [59]. Many optical effects such as refraction

are dependent on polarization and lasers produce fairly uniformly polarized light, so it is possible to take

advantage of polarization-dependent effects in optics. A half-wave plate rotates the polarization of light that

passes through it without reducing intensity. It is called a half-wave plate to represent the angle required

to rotate the polarization by 360°. A PBS splits incident light into two linearly polarized beams with

orthogonal polarizations. The part of the incident light of one polarization is transmitted and the part with

the orthogonal polarization is reflected at a 90° angle.

In the first configuration, the half-wave plate rotates incoming linearly polarized light to the same

orientation as itself. The PBS then splits the beam according to its polarization so that the optical power

at each output of the PBS is proportional to P (θ) = cos2(θ), where θ is the relative angle between the

polarization of the light (which is the same as that of the half-wave plate) and the PBS in radians. By

using only one output from the PBS, one can continuously control intensity over up to three orders of

magnitude. In the second configuration, the transmitted beam from each PBS is used. The first PBS acts as

a polarization filter and takes the place of a half-wave plate with an additonal attenuation factor based on

angle of rotation and the second PBS attenuates further and restores a uniform polarization in the system.

To ensure that A and B are the same to first order, the intensity to which the sample is exposed must

be varied before the laser beam is split into the sample and calibration beams—although, as will be discussed

soon, being the same to first order is not enough to ensure linearity of the system. Unfortunately, most half-
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wave plates have a small wavelength dependence, and the more a wave-plate rotates the polarization of

a light beam, the more severe this dependence becomes. This means that some parts of the spectrum of

the laser beam are attenuated by the PBS after the half-wave plate and some parts are not. Because the

beam splitter used to generate the calibration and sample beams is also wavelength dependent, this can

generate large nonlinearity. For this reason, we used two PBSs rather than a half-wave plate and a PBS.

Furthermore, to minimize nonlinearity due to the polarization dependence of components farther down the

beam path, the second PBS must have an extremely high extinction ratio (100,000:1 in transmitted optical

power); otherwise, the polarization in the system may not be uniform, and this non-uniformity would change

as a function of the angle of the first PBS.

Because the intensity inside the system varies over 3 orders of magnitude, the heat of individual

components varies wildly as well. At 1550 nm, no optical component is completely absorption free, and the

energy of the absorbed light is converted into heat. This heat can stretch, bend, and warp the materials in an

optical component, sending the system out of alignment as intensities increase. This effect is called “thermal

lensing.” For this reason, low-absorption components must be used whenever possible. High-reflectivity

Bragg mirrors6 must be used instead of silver-coated mirrors. Rather than using a beam splitter cube or a

piece of glass at the Brewster angle,7 the laser light is split into the calibration and sample beams by a laser

output coupler at a shallow angle, which has a very well-defined ratio of reflected to transmitted light and

reduces the thermal lensing effects and the angle dependence of the beam splitter that could influence the

output power ratios.

We initially thought that variable attenuation could be accomplished by a piece of glass positioned

slightly off of the Brewster angle to adjust loss and a set of neutral density (ND) filters, which are designed to

attenuate light that passes through them by an extremely well-defined ratio independent of wavelength to a

first-order approximation. However, the ND filters proved to absorb too much energy and to exhibit too much

thermal lensing. Instead, another rotate-able PBS was used. If this PBS is aligned with the polarization
6 A Bragg mirror uses a stack of dielectric materials with different indexes of refraction to obtain extremely high reflectivities

at normal incidence by taking advantage of constructive and destructive interference and the phase shift light undergoes when
it passes through a dielectric interface. Bragg mirrors can obtain reflectivities as high as 99.99% and are used extensively in
laser cavities to reduce loss.

7 The Brewster angle is an angle different for every dielectric material. Light shone on the material at this angle will pass
through with virtually no loss [59].
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Figure 3.5: (A) The nonlinearity in differential transmission caused by absorptive components. ND x is an
absorptive component that attenuates light to 1

10x its original value. x-axis is intensity. y-axis is 1− A−B
A for

the system with no sample in it. (B) Comparison of nonlinearity of system that uses two trans-impedance
amplifiers, one for each detector, to a system that uses one trans-impedance amplifier after signals have been
electrically subtracted. x-axis is intensity. y-axis is 1− A−B

A for the system with no sample in it. Dots are
data points, lines are a spline for effect. Images from [37].

of the incident light, there is no attenuation. As it is rotated to be orthogonal to the polarization of the

incident light, more and more light is reflected such that, eventually, no light reaches detector A. This means

that attenuated light is reflected out of the system, rather than absorbed and converted into heat.

Figure 3.5(A) shows the increased nonlinearity of a differential transmission setup as more absorptive

components are added to the system. This is measured in a controlled way by adding absorptive ND filters to

the calibration arm and re-balancing the system to compensate. The “ND rating” of an ND filter describes

how much light the filter attenuates. An ND rating of 1, written “ND 1.0” reduces the transmitted light

by a factor of 10, ND 2.0 reduces the transmitted light by a factor of 100, and so on. The formula for how

much light is attenuated by an ND filter with ND rating ND x is thus

Ptransmitted =
1

10x
Pincident,

where Ptransmitted is transmitted power and Pincident is incident power.

Electronics also present a problem in linearity. The photodetectors at the end of each measurement

arm are photodiodes, which produce a small current in response to light. If the light shone on them is too
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intense, they themselves behave nonlinearly, so the light that hits them must be attenuated, reducing the

current output further. To measure power accurately, it is convenient to convert the small current signal into

a large voltage signal with a “trans-impedance amplifier,” which converts current to voltage and amplifies the

amplitude of the signal substantially. Initially, we thought that two identical trans-impedance amplifiers—

one for each photodiode—would be sufficient. The difference between the outputs of the trans-impedance

amplifiers could then be used to calculate A − B, and the output from detector A used to calculate A and

the power at which T is measured. However, even two supposedly identical amplifiers behave differently over

such a large dynamic range, resulting in nonlinearity. Much better performance can be achieved by using a

trans-impedance amplifier to amplify the difference between the current outputs of each photodiode, thus

amplifying the signal A(1 +T ) = A−B. To attain A, one photodiode must be covered so that the difference

is A− 0 = A. By using a single amplifier rather than two, any nonlinearity in the electronics affects both A

and B equally, and A−B remains unchanged. Figure 3.5(B) shows the difference in nonlinearity measured

when two amplifiers are used and when one amplifier is used.

Unfortunately, the size of the laser spot on the surface of the photodetector changes the nonlinear

behavior of that detector. This means that if the laser spot size on one detector is different from that of

another detector, the two detectors will behave differently as a function of optical intensity. For this reason,

the spots on each detector must be made as close to the same size as possible. Spot size can be controlled

by changing the focal lengths of the lenses used to focus light on the photodetectors.

Even after all known systematic nonlinearities have been addressed, some nonlinearity can remain. To

address it, a background “nonlinearity curve” is taken before measuring a sample, where A−B is measured

for every A value at which a sample will be measured. This curve is then crudely fitted by a spline and

the spline subtracted from the raw A − B values measured for the sample before calculating T . So long

as these background curves are reproducible, this method reduces nonlinearity down to almost nothing.

Measurements over many hours show these curves to be reproducible to well below 0.5%, making error

negligible compared to variation over physical spots on a sample.

Figure 3.6 shows differential transmission measurements made on monolayer and bilayer graphene

grown at approximately 1 Torr pressure. The bilayer graphene is not lattice matched and thus behaves as
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if it were two monolayers stacked on top of each other. Solid lines show fits which approximate graphene

as a slow saturable absorber. This is acceptable as an example since the overall shape of the curve does

not change much in either approximation. Both Fsat,A and Isat,A are listed for both monolayer and bilayer

graphene. The monolayer graphene burns before it is fully saturated, due to the high optical intensities

to which it is exposed, while the bilayer graphene exhibits greater resilience. These types of plots provide

feedback for optimizing the growth and transfer process of graphene.

Figure 3.6: Differential transmission measurements comparing monolayer graphene to bilayer graphene. Solid
lines are fits approximating graphene as a slow saturable absorber. Saturation fluence is labeled Fsat while
saturation intensity is listed in parentheses. The monolayer curve stops before complete saturation because
the sample is damaged due to high optical intensities. The bilayer graphene proves to be more resilient.

3.4 Time-Resolved Spectroscopy

Time-resolved spectroscopy, or pump-probe spectroscopy, is a method of measurement in which one

first fires a high-intensity pulse of laser light at a sample, in order to excite the sample energetically so

that it transmits more light, then fires a low-intensity pulse and measures the transmittance of the excited

sample. By varying the time delay between the high-intensity and the low-intensity pulses, one can observe

the sample’s capability to transmit light as a function of time—hence the name “time-resolved spectroscopy.”
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Figure 3.7: A time-resolved spectroscopy experiment used by Chien-Chung Lee. Light from a fs laser is split
by a polarization beam splitter (a) into a stronger pump beam and a weaker probe beam. The probe passes
through a variable distance delay line (b) which controls how much time will have passed between when the
pump beam hits the sample and when the probe beam hits the sample. The probe beam is also attenuated
with neutral density filters (c). Each beam, pump and probe, is chopped at a different frequency so that the
lock-in amplifier can differentiate the two. The two beams are made collinear by another polarization beam
splitter (d). They then pass through a focusing lens (e) into the sample (f), and into a re-collimating lens
(g), after which the pump light must be filtered out through another PBS and (h) before the light is finally
re-focused (i) onto a photodiode (j) which transmits all information to a lock-in amplifier.

To produce these two pulses, time-resolved spectroscopy is usually performed with a single mode-

locked laser operating at high intensity. To be certain of how much time has passed since the sample has

been excited by the pump beam, one must know exactly when the pump beam hits the sample and exactly

when the probe beam hits the sample, although one only needs to know the relative time between when the

pump beam hits the sample and when the probe beam hits the sample. To get a resolution of roughly 100

femtoseconds, one needs a 100-fs laser. As Figure 3.7 shows, the laser light is split—either by reflecting it

off of a glass slide or by the use of a PBS—and the stronger of the two beams is sent through the sample.

Meanwhile, the weaker of the two beams bounces between several mirrors and passes through ND filters to

attenuate it further and to delay it before it finally passes through the sample and into a photodetector.

The two beams, pump and probe, are chopped at different frequencies, and the lock-in detects either the

sum frequency or the difference frequency produced by the superposition of the two chopped beams. The

amplitude of the probe beam can then be extracted. The delay line for the weaker beam is changed over

time to accumulate a number of measurements, such that one can eventually build a picture of a saturable

absorber saturating and then relaxing on a picosecond timescale (see figure 2.8).

Unfortunately, even with a high intensity mode-locked laser, time-resolved spectroscopy can be very
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difficult to perform. It is extraordinarily difficult to align powerful lenses so that they focus the laser light

from both the pump beam and the probe beam onto the same spot on a sample. Because of this difficulty,

one often has to settle for much lower intensities than might be desirable. Another issue is scattered light,

which causes noise. The pump beam is much stronger than the probe beam, so if some light from the pump

beam scatters off of the sample—and it will—it is focused by the collimating lens and follows the same beam

path as the light from the probe beam at the detector, causing it to overwhelm any useful data. This is

the reason that the two beams are chopped at different frequencies—to extract the signal from the coaxial

beams. However, the light from the two beams also superimposes and causes constructive and destructive

interference, which interferes with the signal. Differential chopping cannot prevent this effect; it can only

be avoided if the frequency of one of the beams is shifted by some high-speed device (an AOM can do this).

These factors make pump-probe spectroscopy more difficult than differential transmission.



Chapter 4

Optimizing Graphene Growth and Transfer Methods

4.1 A Brief Overview of Methods to Produce Graphene

Graphene can be produced by a number of methods. The first method to be discovered was the

reduction of graphite oxide by heating it to high temperature [28].1 Unfortunately, the yield is very low

and the quality of the graphene flakes produced very poor. The first popular method to be discovered was

“mechanical exfoliation,” or the “scotch tape method,” pioneered by Andre Geim and Konstantin Novoselov

[29]. It involves pulling flakes off of highly-ordered graphite with tape, and then pulling those flakes apart

repeatedly until flakes consisting of between one and ten layers of graphene sheet are achieved. The sheets

are then placed on a substrate and the tape is removed [10, 29]. While this method produces high-quality

graphene, it is extremely slow, does not reproducibly generate monolayer sheets, and is not scalable to

large-area sheets. However, the scotch tape method is still popular because of how cheap it is for research

purposes, where large quantities are not required, and because high-quality graphene can be achieved with

very little optimization.

Another popular method is to heat silicon carbide (SiC) to high temperatures. The bonds between the

silicon and the carbon atoms break, and graphene forms on top of the silicon-carbide crystal lattice [31, 60].

This method is called “epitaxial growth.” Epitaxial growth is scalable to high quantities of graphene,

and, most importantly, silicon carbide wafers are compatible with standard nanofabrication techniques used

to make modern electronics. This makes epitaxial growth very attractive to those interested in making
1 Technically, H.P. Boehm discoved graphene long before Geim and Novoselov, as early as 1962. However, the graphene

produced by Boehm et al. was of very poor quality, and it did not exhibit any of the properties that graphene is famous for
now.
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graphene-based electronics. However, epitaxially-grown graphene usually has more defects in the lattice,

resulting in lower conduction and poorer overall quality.

The method used in these experiments is “chemical vapor deposition” (CVD). CVD uses a transition

metal—such as nickel [61], iridium [62], or copper [63]—to catalyze the high-temperature breakdown of a

carbon-containing gas (such as methane) into carbon and the gas’s other constituents. The carbon deposits

on the metal as graphene and the rest of the gas constituents are blown away from the reaction. The

metal substrate must then be etched away and the graphene deposited onto an arbitrary substrate. At

ambient pressures using most transition metals, growth times must be chosen carefully to limit the number

of graphene layers produced. However, when using copper at low pressures, when statistical mechanics begin

to fail and Newtonian physics prevail, the CVD process on copper becomes self-limiting and produces nearly

single-layer graphene sheets. Theoretical work on this topic was explored by Wenhua Zhang and colleagues

[64], and a controlled experimental study was performed by Sreekar Bhaviripudi et al. [65].Because CVD

requires only a sheet of transition metal, a furnace, maybe a vacuum pump, and some carbon-containing

gas, it is reasonably cost-effective and extremely scalable. In 2010, Sukang Bae and his colleagues managed

to produce meter-by-meter sheets of graphene using CVD on copper [11].

Unfortunately, CVD requires a large initial investment of time and money. Each CVD system is

different, and growth involves a large number of variables that need to be optimized, including the partial

pressures of gases used during growth, the total pressure of the reaction, the temperature of the reaction,

the types of gases and transition metals used, and the pre-growth preparation of the metal to be used as

a catalyst. The transfer method also has many parameters. What etchant should be used to remove the

transition metal, and in what concentration? How should the graphene be cleaned? Can a monolayer survive

a wet transfer process? Because of this uncertainty, it is necessary for each lab or company to optimize their

own CVD process until commercially developed CVD systems are available. One goal of this research is to

develop graphene for use as a saturable absorber by iteratively growing a sample, measuring it by differential

transmission, and using the information gained to tweak the growth recipe. This chapter is about achieving

that goal. Growth and transfer methods will be discussed in broad terms, followed by a discussion of various

recipes arrived at in the optimization of the growth and transfer process.
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4.2 Methods

Graphene was grown by CVD on copper foil (Alfa Aeser #13382, 25 µm) following the work by Li et

al. [63]. The carbon-containing gas was methane. Hydrogen and argon gases were added to the mixture at

various partial pressures. We flattened our copper catalysts between two clean glass slides and placed them

in a reaction chamber. We attempted growths at ambient pressure, at approximately 10 Torr of pressure,

and at approximately 10 mTorr of pressure. The temperature of growth was varied from approximately

850°C, where little to no growth occurred, to approximately 1030°C (Furnace: Thermo Scientific Lindberg

Blue M). A small piece of copper/graphene was cut off for imaging by scanning electron microscope (SEM),

and the rest was prepared for transfer by flattening a sheet of graphene/copper as much as possible and

taping it to a microscope slide by the edges.

The transfer process reproduced another method established by Li et al. [66]. The copper was

spin-coated with poly(methyl methacrylate) (PMMA)2 to act as a temporary substrate during wet transfer

so that the graphene sheet does not break apart under the mechanical stress. The copper foil was then

etched by 0.5 M ferric chloride (Alfa Aesar), leaving graphene/PMMA floating on the surface of the etchant.

The graphene/PMMA combination was then purified by prolonged soaking in de-ionized (DI) water, first

of reactant grade and then of spectrograph grade—reactant grade and spectrograph grade are purities of

deionized water: Spectrograph grade is the most pure, while reactant grade is the second most pure. Finally,

the sample was placed on the desired final substrate, and the PMMA was washed off with organic solvent.

For the solvent, different combinations of acetone, methanol, chloroform, and isopropyl alcohol (IPA) were

experimented with. It was found that two baths of chloroform at 60°C ,interspersed by rinses in acetone and

then methanol, followed by a bath in IPA at room temperature and a final rinse by acetone and methanol

produced the best results. The final transfer method can be found in Appendix A.1.

The saturable absorption of the graphene sample was then measured by differential transmission. By

looking at the SEM images of the sample, and by randomly measuring the linear absorption of many spots

over the area of the sample using the differential transmission setup, it could be determined whether the
2 PMMA is a transparent plastic often used in nanofabrication as a photoresist. It dissolves in organic solvents, but not in

weak acid.
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graphene sample was many flakes or a single large sheet. In the case of sheets, it is not difficult to measure

graphene by differential transmission. In the case of flakes, the flake size as measured on the SEM roughly

represents the single-crystal domain size of the graphene. Domain size means how large each single crystal

formation is in a graphene sheet.

Ideally, large crystals of arbitrary size should be possible to produce. In practice, however, many

crystal domains form. However, it can be difficult to locate a flake with diameter on the order of tens

of microns to measure. By keeping the intensity constant in differential transmission, it is possible to

sample the linear absorption of many spots on a graphene sample. Flakes can then be located and their

nonlinear absorption measured by varying the intensity from 3 to over 3000 MW/cm2. However, to avoid

damaging samples with low damage threshold, intensities were only varied up to 1000 MW/cm2. To increase

prototyping speed, as few as 3 spots on a graphene sample would be measured, with between 2 and 4 samples

produced per growth recipe. Because the intensity on the sample is automatically increased incrementally

during a measurement, damage can be mistaken for saturable absorption, except that the absorption rises

again as the intensity is reduced. For this reason, each spot was measured at least twice to ensure that

damage did not give a false signal. Preliminary work on growth recipes was done by Chien-Chung Lee and

Brian Benton. Later work was done by the author in collaboration with Chien-Chung Lee.

4.3 Recipe Case Studies

This section will describe, in loose narrative, the optimization process we went through to attain

high-quality CVD graphene. It will emphasize a few notable steps in the process where we discovered a

useful guiding principle or an especially good (or especially bad) recipe. The goal during this process was

to develop a good recipe as quickly as possible. Unfortunately, because of graphene’s relatively low damage

threshold, it often burned before fully saturating, making curve-fitting difficult. Because of this, very little

attention was paid to error analysis. We made educated guesses regarding the next recipe to try after

observing the qualitative information gained from saturable absorption curves (up until damage), poor fits,

and SEM images. Measurement variance was only calculated for samples used in later experiments. Most

of this work focused on reproducing the work of Xuesong Li and colleagues from [63, 66, 67, 68] in our own
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lab and applying it to optics.

Initially, growths were performed at ambient pressure and temperature. However, the graphene quality

was extremely poor, and differential transmission measurements showed very little saturable absorption

(although linear absorption was an integer multiple of approximately 1.9%, as expected). To more closely

emulate Li et al., a roughing pump was used to lower the pressure in the reaction chamber to approximately

10 Torr. This low pressure drastically improved results. One high-quality growth recipe from this period of

experimentation was the following:

The flattened copper foil was placed in the reaction chamber, and the pressure lowered to approxi-

mately 10 Torr. The chamber was then heated to 1000°C, which took approximately 1 hour and 10 minutes

(1:10h). During the heat-up phase, 20 standard cubic centimeters per minute (sccm) of hydrogen gas flowed

through the tube, raising the pressure marginally. After the target temperature was reached, the copper was

allowed to anneal3 in the 20 sccm hydrogen flow for approximately 30 minutes (30m). After annealing, the

copper was exposed to 20 sccm of hydrogen and 35 sccm of methane for approximately 30m. This was the

“growth phase” of the process. After the growth phase, the copper was allowed to cool to room temperature

under the same gas flow as the growth phase. Cool-down took approximately 1h.

The purpose of annealing during growth was to remove any contaminant or oxidation layer that had

accrued on the copper. The copper surface must be uncontaminated for continuous low-defect graphene.

This annealing step remained in all recipes after initial trials; it is in current recipes as well. In this phase

of experimentation, the following flow controllers were used:

� Hydrogen: MKS Mass-Flo model#14794A0722CR1BM, dynamic range 0–200 sccm.

� Argon: MKS Mass-Flo model#1479A0418CR1BM, dynamic range 0–1000 sccm.

� Methane: MKS Mass-Flow model#1479A02922CR1BM, dynamic range 0–200 sccm.

The sample shown in 4.1, had a large linear absorption, indicating multilayer graphene. This multilayer

sample was likely produced by accidental folding during the wet transfer process. Only multilayer samples

grown by this recipe had a high enough damage threshold to be accurately measurable or reliably used as
3 Annealment is a heat treatment that alters the properties of a material. In this case, the goal is to remove any adsorbants

from the surface of the copper.
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saturable absorbers. However, multilayer graphene is undesirable because high linear absorption adds to

the loss in a laser cavity, thus requiring more laser gain for the laser to operate. Most solid state gain

mediums have low gain, so a high loss absorber is useless in solid state lasers, which often have the widest

gain-bandwidth and thus generate the shortest pulses. Graphene grown in this regime also had a higher

saturation fluence/intensity and a lower single-layer damage threshold than later samples.
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Figure 4.1: The saturable absorption of a recipe grown at approximately 10 Torr. Graphene plotted as a
fast saturable absorber for simplicity. Red triangles are the first measurement, green circles are the second.
Both measurements made on the same spot. The green curve does not saturate, indicating damage. The
approximately 5 percent linear absorption indicates that the sample is at least bilayer graphene.

We theorized that the high saturation fluence/intensity and low damage threshold might both be

caused by the graphene sheet consisting of many small crystal domains. The domain boundary between

two crystals traps charge and blocks conduction, perhaps changing the band structure and increasing the

fluence/intensity required for saturation. Furthermore, it is possible that damage initially occurs at the

edges of a crystal domain; and thus, the more domain boundaries there are, the lower the damage threshold.

In another paper, Xuesong Li and his colleagues suggested that high pressure is the cause of small domain

size and that the lower the pressure the reaction takes place in, the larger the graphene domains will be [67].

Li et al. also hypothesized that a high density of methane molecules in the reaction causes more methane

to break down more quickly and in more places on the copper than a low density. This high break-down
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rate means that a graphene crystal has less room to grow before it encounters another crystal and must stop

growing, resulting in a small domain size [67].

In order to grow graphene in the ultra-low pressure regime, a turbopump/roughing pump combination

was acquired (Drytel 100-R), and a high-vacuum system constructed. This work was performed by Chien-

Chung Lee and Professor Thomas Schibli. Figure 4.2 shows a photograph of the ultra-low pressure (ULP)

CVD system. To enable more rapid cooling of a sample, the furnace was placed on a rail so that it could be

moved away from the sample, allowing the sample to cool. New flow controllers had to be purchased because

high flow rates increased pressure to unacceptably high levels and the resolution on the high-flow rate flow

controllers was not good enough. The following flow controllers were used:

� Argon: MKS Mass-Flo model#1479A0722CR1BM, dynamic range 0–200 sccm.

� Hydrogen: MKS Mass-Flo model#1479A00711C51BM, dynamic range 0–10 sccm.

� Methane: MKS Mass-Flo model#1479A02811C51BM, dynamic range 0–10 sccm.

In addition, the following two flow controllers were used as bypass valves to prevent a buildup of pressure

behind the active flow controllers and to prevent gas leakage into the reaction chamber.

� Argon: MKS Mass-Flo model#1479A0418CR1BM, dynamic range 0–1000 sccm.

� Methane: MKS Mass-Flow model#1479A02922CR1BM, dynamic range 0–200 sccm.

Graphene grown in the ultra-low pressure regime consists of disconnected graphene flakes with di-

ameters greater than 10 µm and large micron-order gaps between the flakes. These gaps make many mea-

surements difficult, since the graphene is not conductive across the entire sheet and it can be difficult and

time-consuming to find a flake to make measurements on by differential transmission. In [68], Li et al.

suggested that a two-step growth process could be used to produce a more connected graphene sheet. Li

and colleagues suggested that there should first be a long growth phase with extremely low pressure in the

reaction chamber and very small gas flow rates to produce large domain-size flakes, then a short second

growth phase with a higher flow rate of methane (10 sccm compared to 1 sccm) to produce many very small

domain size crystals to fill in the gaps. Ideally, this recipe should produce graphene of the same high quality
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Figure 4.2: Ultra-low pressure vacuum system. (A) long view. (B) side view.

as the single-step growth listed above, but the sheet will be more consistent. This recipe was adapted to our

system and can be found in Appendix A.2.1.

Figure 4.3: Samples grown using Li et al.’s recipes for ultra-low pressure graphene. (A) Differential trans-
mission measurements of graphene approximated as a fast saturable absorber. Shaded region shows damage
threshold. Grey curves are measurements and dark black curve is a fit. Measurements made in collabora-
tion with Chien-Chung Lee. (B) SEM image of graphene sheet produced by two-step process. Inset: SEM
image of graphene produced without the second growth phase to fill in the gaps between flakes, showing the
approximate domain size of the primary graphene flakes (10 to 16 microns in diameter). Scale is the same
for both images. SEM measurements made by Chien-Chung Lee.

As shown in Figure 4.3(B), the two-step process produces a near-uniform sheet of graphene, with
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domain boundaries barely visible. The inset shows graphene produced by a single-step ultra-low pressure

growth. The crystal domain size for the large flakes should be the same for both growths, while there are

regions in the sheet produced by the two-step growth that have much smaller grains between the large ones.

The crystal domains for large grains range in size from 100 to 200 µm2—which is substantially larger than the

laser spot focused onto the sample, which is approximately 15 µm2. However, in the case of the single-step

growth, there are often gaps between flakes as large as 15 µm in diameter, which often makes finding a flake

to measure by differential transmission difficult and the system inconsistent. Figure 4.3(A) shows typical

differential transmission measurements of graphene produced by these two recipes. Both recipes produce

graphene with the same properties as a saturable absorber, although the single-step process is less consistent.

Grey curves are measured data, while the black curve is a fit over all data points. When the data diverges

from the fit, the graphene has been damaged. Because of its high level of consistency, we still often use the

two-step recipe.

Modeling this graphene as a fast saturable absorber, we found that the graphene produced by these

recipes showed a linear absorption of (1.85 ± 0.08)%, a saturable loss of (0.85 ± 0.04)%, and a saturation

peak intensity of (250± 80) MW/cm2. If it is modeled as a slow saturable absorber, the saturation fluence

is found to be approximately 40 µJ/cm2. The linear absorption is for graphene on a glass slide, and it is

lower than the absorption for suspended graphene (2.3%) because the dielectric interface between air and

glass mediated by the graphene sheet reduces this loss. Theoretical work on this topic was performed by

Stauber et al., who first calculated the optical conductivity of graphene from first principles and then used

this result to calculate the absorption for a graphene sheet placed on a dielectric-dielectric interface [32].

Because ultra-low pressure makes it much easier to grow high-quality monolayer graphene. The

following question arises: In this regime, is it better to make the total pressure in the reaction chamber as

low as possible, or is it better to make the partial pressure of methane gas as low as possible compared to

that of the other gases in the chamber while still maintaining a nonzero flow rate? To answer this question,

we performed growths where the total pressure in the reaction chamber during the growth phase was as

low as possible (approximately 1 mTorr) and growths where the partial pressure of methane was as low as

possible compared to that of hydrogen (we achieved a ratio of approximately 1:50). To attain the low total
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pressure, the flow rates of both hydrogen and methane were reduced to approximately 0.2 sccm during the

growth phase and the copper was exposed to only 0.2 sccm of hydrogen during cool-down. To achieve a low

partial pressure of methane compared to hydrogen, the methane flow rate was reduced to 0.2 sccm and the

hydrogen flow rate increased to 10 sccm during the growth phase.

In both cases, these low flow-rate growths proved to be extremely inconsistent compared to the

growth recipes outlined above. This inconsistency could be attributed to a number of factors. First, the

flow controllers used are only reliable to about 1/50th of their dynamic range—i.e., 0.2 sccm, the flow rates

used in these growths. It is thus possible that gas did not flow for the entirety of the growth process. It

is also possible that over the long times required for the growth, the sublimation of the copper substrate

caused inconsistency. At such low pressures and high temperatures, the copper substrate slowly sublimates

into the vacuum around it in the reaction chamber. In the total 3:10h that a high flow-rate growth occurs

in, this sublimation is probably irrelevant. However, in the 6h or more that a low flow-rate growth might

take, it can make a nontrivial contribution to the growth process. In fact, we found that the flake size for

low flow-rate growths is self-limiting. We never observed a graphene flake with diameter larger than 150

µm, even when there was ample room for the flakes to grow and when the sample was exposed to methane

at 1000 C for over 4 hours. We hypothesize that this self-limiting behavior might be caused by “elevated

terraces” that appear on the copper foil. During growth, the growing graphene flakes might protect the

copper underneath them from sublimation, while the exposed copper foil slowly sublimates. Eventually, the

vertical gap between the area covered by the graphene flakes and the uncovered copper might become wide

enough that a single crystal domain cannot grow across this gap.

Graphene samples grown at the lowest possible total pressure were never observed to be superior in

saturation intensity/fluence or damage threshold to graphene grown by the one-step process detailed above,

and they were often substantially worse. However, graphene samples grown by reducing the partial pressure

of methane were observed to be, on average, comparable or superior to the graphene grown by the one-step

and two-step processes above, despite their inconsistency. The recipe used can be found in Appendix A.2.2.

As shown in Figure 4.4, this recipe produced widely varying domain sizes for the same growth param-

eters, although the saturation fluence/intensity was not much affected by domain size. The crystal domain
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Figure 4.4: Samples grown by ultra-low pressure CVD such that the partial pressure of methane compared
to hydrogen was as low as possible. (A) An average sample grown using this recipe. (A1) Differential
transmission measurements made for an average sample. Dots are data, solid line is a fit with graphene
modeled as a fast saturable absorber. (A2) SEM image for an average sample grown using this recipe.
Average domain size is approximately 25 µm in diameter. Image taken by Chien-Chung Lee. (B1) Differential
transmission measurements for the most durable sample produced by this recipe. Dots are data, solid line is
a fit with graphene modeled as a fast saturable absorber. Damage threshold could not be measured because
peak intensity could not be made high enough. (B2) SEM image for the most durable sample grown using
this recipe. Average domain size is approximately 120 µm in diameter. This is the largest domain size we
have produced to date. Measurement taken by Chien-Chung Lee.

size ranged from approximately 25 µm in diameter for an average sample—notably larger than the domains

for the other growths outlined in this chapter—to approximately 120 µm in diameter for the very best sam-

ple measured. Saturation intensity was found to be (241 ± 12.0) MW/cm2, and if graphene was modeled

as a slow saturable absorber, saturation fluence was found to be (57.7 ± 2.90) µJ/cm2. Saturable loss was

found to be (0.66 ± 0.01)% and non-saturable loss was found to be (1.11 ± 0.08)%. While the saturation
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fluence/intensity and linear and nonlinear absorption of the samples did not vary greatly with increasing

domain size, the damage threshold did. The average sample shown in Figures 4.4(A1) and (A2) damaged

at approximately 1 GW/cm2, which is comparable to the samples discussed above. However, the damage

threshold of the best sample measured, shown in Figures 4.4(B1) and (B2), could not be determined because

our laser could not produce an intense enough pulse.

Overall, we found two recipes that produce high quality graphene. The two-step growth process first

proposed by Li et al. [68] produces relatively lower quality graphene but it is highly reproducible; on the

other hand, the extremely low partial-pressure process produces relatively higher quality graphene, but it is

substantially less reproducible. The large domain-size, low partial-pressure growth recipe was later used to

generate suspended graphene (not discussed here), while the more reproducible two-step process was used to

study ways to tune graphene’s optical properties, discussed in the remaining chapters. F.T. Vasko calculated

that, for light approximately 1.5 µm in wavelength, the peak intensity of a pulse must be approximately 60

MW/cm2 [40]. Taking into account the dependence of saturation intensity on pulse width, our values, (250

± 80)MW/cm2, agree with Vasko’s calculations within roughly a factor of 4. A higher saturation intensity

implies a shorter time required for electrons to decay from the conduction band to the valence band. This

might be caused by graphene’s interaction with the substrate—a very strong effect, since graphene is only

two-dimensional—or by defects in the graphene lattice. The discrepancy might also be due to fitting error.

We assumed a fast saturable absorber for our fits, which is an approximation (see section 2.3.1).

4.4 Optical Damage

Unfortunately, while the graphene we produced has a saturation intensity/fluence comparable with

most semiconductor saturable absorber mirrors (SESAMs), a satisfactorily low non-saturable loss, and ac-

ceptably large modulation depth,4 full saturation is usually impeded by the onset of permanent damage

around 2 GW/cm2. (Operating below damage threshold then results in unsatisfactorily high insertion loss5

and low modulation depth.) We hypothesized that this damage occurs due to the peak intensity of a laser

pulse, rather than from the average power of the beam. We tested and confirmed this hypothesis by ob-
4 Modulation depth is the difference between linear absorption and non-saturable loss.
5 Insertion loss is the amount of loss observed when the absorber is as saturated as it will get in the laser cavity.
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serving the damage properties of the graphene under radiation from a mode-locked laser and from the same

laser operating in the CW regime. We kept the average power the same in both cases, but only observed

damage when the laser was mode-locked and the peak intensity was thus 50,000 times greater.

To better understand this process, we measured the damage threshold of the graphene in an argon

atmosphere, and found it unchanged. This implies that the cause of damage is not oxidation or “burning.”

Rather, it is likely due to an interaction between the graphene and residual contaminants or between the

graphene and the substrate, enabled by the extremely large electric fields from the laser pulse. Further

steps to examine this process might include generating purer graphene in some way, measuring the damage

properties of suspended graphene, and measuring the damage properties of graphene on different substrates.

Preliminary steps have been made in all of these directions, but, no reliable conclusions have yet been

drawn.



Chapter 5

Characterization of Doped Graphene

5.1 Doping and State Blocking

Figure 5.1: State blocking due to hole-doping in graphene as viewed near the Dirac point. Red cone is the
conduction band. Blue cone is the valence band. Dark blue represents states occupied by electrons, while
light blue represents states occupied by holes. As the Fermi level decreases, fewer electrons are in the proper
energy level (E = −~ω/2) for excitation. Eventually, no electrons remain with energy greater than or equal
to ~ω/2, and absorption ceases. An analogous picture can be formed for electron doping. Image by Prof.
Thomas Schibli.

One of the great advantages of SESAMs is that the optical properties of an individual SESAM can be

adjusted during production. Relaxation time, linear absorption, and saturable loss can all be tuned to meet

design specifications for a variety of laser systems. For graphene-based saturable absorbers to compete with

SESAMs, they too must be tunable during production. One possible way to adjust the optical properties of

a semiconductor is to adjust its Fermi level. As shown in Figure 5.1, one can block absorption by shifting

graphene from the insulating phase to either the electron or hole conducting phase so that, for a given photon
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energy, no electrons can be excited from the valence band into the conduction band—either because there

are no electrons in the valence band at the required energy to excite, or because there are no open states at

the required energy in the conduction band for the excited electrons to enter. This is called “state blocking.”

The question then arises: how does one change the Fermi level in a material? The answer is that

one must immobilize charge in the material, effectively removing charge carriers from the band structure.

Charge carriers can be immobilized by adding stationary charges to the material, which attract the carriers

of the opposite charge to them. This is called “doping.” Figure 5.2 shows the doping of a bulk semiconductor

by a strong acid. The H+ ions in the acid contact the material and attract electrons to the surface of the

semiconductor. The electrons in the semiconductor then form dipoles with the H+ ions. The number of

charge-carriers is thus reduced, and the Fermi level decreases. Because charge-carrying electrons are removed,

this is called “hole-doping” or “p-doping.” If holes are immobilized, rather than electrons, the process is

called “electron-doping” or “n-doping.” An analogous process can occur in graphene, although it is much

more difficult to illustrate because of the two-dimensional nature of the material.

Figure 5.2: Hole-doping of a bulk semiconductor by a strong acid. First, the H+ ions (red) attach themselves
to the material, attracting electrons (yellow) from inside the bulk (grey) to the surface. The electrons then
form dipoles with the H+ ions, leaving holes (green) behind in the material and lowering the Fermi level.

Because fewer electrons in the valence band means a lower probability of an individual electron being

excited into the conduction band, absorption decreases continuously as the Fermi level shifts away from the

K point, even when state blocking has not yet taken full effect. This provides a tool for continuously tuning

the optical absorption of graphene during production. Because state blocking affects all photons with energy
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less than twice the difference between the K point and the Fermi level, doped graphene no longer has a

constant linear absorption. The absorption spectrum of doped graphene can then be used to determine the

Fermi level.

This chapter will discuss our characterization of this process using nitric acid as a dopant. We

doped graphene with various concentrations of nitric acid and determined the Fermi level by fitting to the

transmission spectrum measured by spectrophotometry, which measures the transmission spectrum of a

material T (ω). We then measured the nonlinear absorption of the samples by differential transmission and

correlated it to Fermi level. The bulk of this work was done by Chien-Chung Lee. To confirm that the

nitric acid was indeed doping the graphene as expected, we also studied the Raman spectrum of pristine and

doped graphene, discussed below. Raman spectroscopy is a proven tool for studying graphene and there is an

enormous body of literature discussing the Raman spectrum of graphene, which is now well understood. We

drew on this body of knowledge to characterize our own graphene and confirm that the behavior we observed

in spectrophotometry and differential transmission was due to doping. The bulk of Raman spectroscopy work

was done by the author.

In this chapter, spectrophotometry will first be discussed in slightly more detail, and the results of

differential transmission measurements on doped graphene will be discussed. This will be followed by a

detailed discussion of Raman spectroscopy, starting with a highly abridged theoretical analysis of Raman

scattering in general. Then, previous work on the Raman spectrum of graphene will be summarized, with an

emphasis on studies relevant to the doping of graphene. Finally, results of our own study will be discussed

and analyzed.

5.2 Spectrophotometry and Differential Transmisson of Doped Graphene

5.2.1 Spectrophotometry

All work on spectrophotometry was done by Chien-Chung Lee and Linna Cooley. The following

theoretical treatment was adapted from work done by T. Stauber and colleagues [32]. The transmission

spectrum of doped graphene strongly depends on the optical conductivity (σ) as a function of Fermi level,
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µ, frequency of incident light (ω), and temperature (T ). derived by Stauber et al. [32]:

σ =
σ0

2

[
tanh

(
~ω + 2µ
4kBT

)
+ tanh

(
~ω − 2µ
4kBT

)]
, (5.1)

where σ0 is the optical conductivity of pristine graphene (µ = 0), kB is Boltzmann’s constant, e is the charge

of an electron, and ~ is the reduced Planck’s constant, h/2π. At normal incidence, the transmittance (T) of

a graphene sample placed at the interface between two dielectric materials with indexes of refraction n1 and

n2 is then [32]:

T =
4n1n2n1 + n2 +

σ

cε0


2 , (5.2)

where ε0 is the permittivity of free space and c is the speed of light in vacuum. This can be Taylor expanded

to give

T ≈ T0

[
1− sσ

cε0(n1 + n2)

]
(5.3)

where T0 is the transmittance at the same interface without graphene:

T0 =
4n1n2

(n1 + n2)2
. (5.4)

In the case of an interface between air (n = 1) and glass (n = 2), T0 = 0.96. With some algebra, one finds

that the change in transmittance due to the presence of graphene on a glass slide (including both interfaces

of the slide) is

∆Ttotal = |TT0 − T 2
0 | =

2σT 2
0

cε0(n1 + n2)
. (5.5)

The Fermi level can be found by measuring T (ω) with spectrophotometry and then fitting equations

5.5 and 5.1 to the measured spectrum. The concentration of dopants on the graphene surface is likely

a spatially-dependent random distribution. In other words, the concentration of H+ ions ρH+ at some

coordinates (x0, y0) might be different than the concentration at some other coordinates (x1, y1), where ρH+

depends on some undetermined random variable. Assuming that ρH+ is symmetric around its mean E[ρH+ ],

we can compensate for this nonuniformity by allowing the temperature in the fit function, T , to represent
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an effective temperature rather than the physical temperature of the electron gas1 in the material. This

effective temperature is then an added degree of freedom in the fit. In our fits, the effective temperature

ranged from about 3000K to about 5000K.

Figure 5.3(A) shows the transmission spectrum of graphene hole-doped to various Fermi levels by

immersion in nitric acid as measured by spectrophotometry. The Fermi level is positively correlated with

the nitric acid concentration. Although the exact increase is not reproducible with nitric acid, the trend is.

It is likely that if another dopant is chosen, the behavior could be made to be quantifiably reproducible.

5.2.2 Differential Transmission

Figure 5.3(B) shows differential transmission curves of the same samples shown in 5.3(A). The linear

absorption decreases significantly with increasing doping concentration (and thus with increasing Fermi

level) while the non-saturable loss decreases only slightly. This implies that the modulation depth of a given

absorber can be tuned with the Fermi level. The fact that the non-saturable loss does not increase with

increased doping concentration is an indication that the graphene lattice is not damaged by exposure to

nitric acid.

5.3 Raman Spectroscopy

To further understand the effects of nitric acid on graphene, and to confirm that we were reversibly

doping our graphene, we measured the Raman spectra of graphene samples doped to various Fermi levels

and by various concentrations of nitric acid. Raman spectroscopy is an extremely powerful tool for the study

of condensed matter systems, especially organic molecules. It takes advantage of Raman scattering, named

after its discoverer Sir Chandrasekhar Venkata Raman [69], which is the inelastic scattering of light off of

a material. This is in contrast to Rayleigh scattering (named after its discoverer Lord Rayleigh), which is

elastic. In Rayleigh scattering, light scatters off of a material with the same wavelength as it had before it

hit. In contrast, in Raman scattering, the scattered light can have either a longer or a shorter wavelength
1 The behavior of electrons in a material can be modeled by treating all electrons as particles in a “Fermi gas,”—a construct

similar to a classical gas, with the added complications that the electrons are delocalized in the material and that no two
electrons can exist in the same state, since they are fermions.
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than the incident light. Raman scattering is a much weaker effect than Rayleigh scattering, and one must

filter out all Rayleigh-scattered light to observe the Raman-scattered light off of a material.

5.3.1 Theory of Raman Scattering

The following semiclassical treatment of the theory of Raman spectroscopy is covered in some depth

and expanded upon by John R. Ferraro et al. [70]. In section 2.2, the structure of the electron energy levels

in a condensed matter material was developed. However, this treatment neglected the fact that complex

molecules vibrate.2

5.3.1.1 The Classical Theory

Consider the classical picture of a vibrating polar molecule. For simplicity, the molecule will contain

only three atoms, as shown in Figure 5.4.

Figure 5.4: A toy model of a molecule. Purple represents one sign of charge when the molecule becomes
polarized, while blue represents the other.

This molecule is undergoing simple harmonic motion, which obeys Hooke’s law. There is then an

equilibrium position for the “spring” that acts as the resistive force and tries to hold the charge clouds in

the atom a specific distance away from each other. Define the parameter r as the distance of the centers

of charge—i.e., the poles of a polar molecule, and this molecule will become polar momentarily—from the
2 As a first-order approximation, the atomic nuclei in a molecule do not vibrate; rather the electron clouds carrying charge

vibrate. For simplicity, however, this distinction will be ignored.
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equilibrium position, as shown in Figure 5.5. In the Figure, r0 is some constant nonzero value. However, in

a moment, it will be defined as the amplitude of harmonic oscillation, set by initial conditions.

Figure 5.5: Definition of a coordinate system for classical Raman scattering. r is the distance of the poles
from the equilibrium position for the “spring” that tries to hold the poles a specific distance away from each
other. In this case r0 is some constant nonzero value. It is important to note that this picture is a simplistic
model. To first order, the bonds of the molecule do not actually shift; rather, the electron clouds move.

Hooke’s law then reads

mr
d2r

dt2
= −ksr, (5.6)

where ks is the spring constant, determined by the attractive force between the two poles of the molecule

(not discussed here), and mr is the reduced mass for the two charge clouds of masses m1 and m2:

mr =
m1m2

m1 +m2
. (5.7)

The solution space to Hooke’s law is sinusoidal, and all solutions are of the form

r(t) = r0 cos(νmst− φs) where νm =
√

ks
mr

. (5.8)

r0 and φs are constants determined by initial conditions. Later, it will be important that this implies that

the oscillating charges have a constant total energy, which is the sum of the kinetic energy (KE) and the
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potential energy (PE) of the system:

Etot = KE + PE =
1
2
mr

(
d

dt
r(t)

)2

−
∫

(−ksr(t))dr

=
1
2
mrr

2
0ν

2
m sin2(νmt− φs) +

1
2
ksr

2
0 cos2(νmt− φs)

=
1
2
mr

ks
mr

r20 sin2(νmt− φs) +
1
2
ksr

2
0 cos2(νmt− φs)

=
1
2
ksr

2
0

[
sin2(νmt− φ) + cos2(νmt− φ)

]
=

1
2
ksr

2
0. (5.9)

Now consider the same molecule irradiated by a beam of monochromatic light. For simplicity, this

is a plane wave of frequency ν0. At a single position in space, the electric field of this light wave can be

described as

E = E0 cos (2πν0t) , (5.10)

where E0 is the amplitude of the wave, t is time, and ν0 is the frequency of the light. To first order, the

magnetic field can be neglected because the amplitude is B0 = E0/c, where c is the speed of light. This

radiation induces an oscillating dipole in the molecule, in addition to the oscillations already occurring. The

induced dipole moment3 (P ) of the molecule then follows harmonic motion at a different frequency:

P = αE0 cos(2πν0t), (5.11)

where α is the “polarizability” of the molecule. Intuitively, the polarizability represents how easy it is

to induce a dipole moment in the molecule, since in a linear dielectric material, the dipole moment (or

polarization) is defined as P = αE. Thus, in this case, we are implicitly assuming the molecule is a linear

dielectric.

This oscillating dipole moment does not account for the implicit vibration of the molecule discussed

earlier. To account for it, assume the vibration is small and Taylor expand α as a function of r(t):

α = α0 +
(
∂α

∂r

)
0

r + ..., (5.12)

where α0 is the polarizability for the molecule at the equilibrium position r = 0 and
(
∂α
∂r

)
0

is the rate of

change of α with respect to a change in r, evaluated at r = 0. Now substitute equation 5.12 into equation
3 The dipole moment of a material is the electric field caused by the dipole of the material. It has units of volts/meter.
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5.11:

P = αE0 cos(2πν0t)

= α0E0 cos(2πν0t) +
(
dα

dr

)
0

rE0 cos(2πν0t)

= α0E0 cos(2πν0t) +
(
dα

dr

)
0

r0E0 cos(2πν0t) cos(2πνmt)

= α0E0 cos(2πν0t) +
(
dα

dr

)
0

r0E0 [cos ((2π(ν0 + νm)t) + cos (2π(ν0 − νm)t)] . (5.13)

The result is three superimposed oscillations in the dipole: (1) one oscillating at the original frequency of the

perturbing radiation ν0, (2) one oscillating at the sum frequency of the perturbing light and the vibrations of

the unperturbed molecule ν0 +νm, and (3) one oscillating at the difference frequency between the perturbing

light and the unperturbed molecule ν0−νm. An oscillating dipole radiates energy, so new light is emitted by

the molecule at all three of these frequencies. The emitted light that is the same frequency as the perturbing

radiation is “Rayleigh-scattered” light. The emitted light of the other two frequencies is “Raman-scattered,”

and it comes in two varieties. The difference-frequency scattering produces light that is lower energy than

the incident light,4 and it is called “Stokes scattering.” The sum-frequency scattering produces light that is

higher energy than the incident light, and it is called “anti-Stokes scattering.”

It is important to note that not every molecular vibration (called a “vibrational mode”) results in

Raman scattering. For a mode to contribute to Raman scattering,

(
dα

dr

)
0

6= 0. (5.14)

In other words, the change in polarizability at the equilibrium position must be nonzero. Modes that con-

tribute to Raman scattering are called “Raman-active” modes, while modes that do not are called “Raman-

inactive” or “IR-active.” This is because IR-active modes cause the molecule to absorb light in the infrared

spectrum, allowing for IR-active modes to be observed using infrared (IR) spectroscopy, which is considered

a complementary technique to Raman spectroscopy. Figure 5.6 shows the difference between Raman-active

and IR-active modes. The diagrams showing how the molecule moves are associated with plots α(t). The

Raman-active mode has its minimum and maximum in polarizability at the extremal positions. On the
4 Recall that the energy of a photon is proportional to its frequency: E = hν, where h is Planck’s constant.
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other hand, the Raman inactive mode has its minimum in polarizability at the equilibrium position, while

the maxima are symmetric about the origin.

Figure 5.6: Raman-active and -inactive modes. Vibrations of molecules are shown with a corresponding plot
of α(r) in arbitrary units. Red and yellow are areas where opposite charge clouds would be induced by an
electric field. Left: Modes that have a nonzero change in the molecule’s polarizability at the equilibrium
position are Raman-active. This stretching mode is called a “longitudinal phonon.” Right: Modes that
have a zero change in the polarizability at the equilibrium position are Raman-inactive. This bending
mode is called a “transverse phonon.” Note that in more complex molecules, longitudinal phonons can be
Raman-inactive and transverse phonons can be Raman-active.

5.3.1.2 Aside: Phonons and Types of Phonons

Note that the two types of vibration shown in Figure 5.6 are fundamentally different in a way not

related to their polarizability. The mode displayed on the left is a “stretching” or “breathing” mode. It

relies on the stretching and compression of the distance between the charge clouds. On the other hand, the

mode displayed on the right is a “bending” mode. There is an oscillation perpendicular to one of the axes.

In condensed matter materials, these vibrational modes can be restricted to discrete energies by the periodic

boundary conditions of a unit cell. When vibrations are quantized, they are called “phonons.” A stretching

mode is called a “longitudinal phonon” and a bending mode a “transverse phonon.”
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5.3.1.3 The Quantum Connection

The classical description of Raman scattering fails to account for a key observation: Stokes scattering,

is a much stronger effect than anti-Stokes scattering. While equation 5.13 correctly predicts that Rayleigh

scattering is a stronger effect than Raman scattering—r was assumed to be small so that we could Taylor

expand it; Raman scattering can be thought of as a higher-order correction to Rayleigh scattering—it does

not reflect the difference in intensities for Stokes and anti-Stokes scattering at all. To understand this

discrepancy, one must consider the quantum-mechanical picture of scattering.

In Rayleigh scattering, an incident photon that does not match the energy distance between two

well-defined energy states in the system excites an electron from its ground state to what is called a “virtual

excited state,” an energy state allowed only by the Heisenberg uncertainty principle, ∆E∆t & h. The virtual

excited state can only exist for a small time, since the more well-defined a time is, the less well-defined a

corresponding energy is. As time passes, the uncertainty that allowed the state to exist disappears, and

the state disappears with it. When this happens, the electron decays back into its ground state, emitting

a photon with the same energy as the exciting photon, but in a random direction. It is important to note

that, while this sounds very similar to stimulated emission or saturable absorption, it is a fundamentally

different process. In stimulated emission, the stimulating photon is not absorbed and the emitted photon

goes in the same direction as the stimulating photon. In the case of Rayleigh scattering, the stimulating

photon is absorbed and the emitted photon propagates in a random direction. That said, Raman scattering

is a coherent process, just like stimulated emission.

In a vibrating molecule, the electron has an additional allowed energy state: the vibrational semi-

classical simple harmonic oscillator state with energy equal to E = E0 + 1
2ksr

2
0, where the first term is the

ground-state energy and the second comes from equation 5.9. In Stokes scattering, the electron is excited

out of its ground state into the virtual excited state, but it decays into the vibrational state, emitting a

photon less energetic than it absorbed. In anti-Stokes scattering, the electron starts in the vibrational state,

is excited into a virtual excited state, and then decays back into its ground state, emitting a photon more

energetic than the one it absorbed. Figure 5.7 depicts this model of scattering and highlights the differences
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between Rayleigh, Stokes, and anti-Stokes scattering.

Figure 5.7: The quantum description of scattering. (A) Rayleigh scattering. An electron absorbs a photon
and is excited from its ground state into a virtual excited state. It then decays back down into the ground
state, emitting a photon of the same energy in a random direction. (B) Stokes scattering. An electron
absorbs a photon and is excited from its ground state into a virtual excited state. It then decays into an
excited state from the simple harmonic motion of the molecule and emits a photon of reduced energy in
a random direction. (C) anti-Stokes scattering. A photon is excited from an excited state due to simple
harmonic motion into a virtual excited state. It then decays into its ground state, emitting a higher-energy
photon.

At any given time, the number of electrons in the excited vibrational state compared to the number

of electrons in the ground state is given by the Boltzmann distribution:

N1

N0
=
g1
g0
e−(E1−E0)/kBT . (5.15)

In this case, N1 is the population of the vibrational excited state, N0 is the population of the ground state,

g1 is the degeneracy of the excited state, g0 is the degeneracy of the ground state, E1 = 1
2ksr

2
0 + E0 is the

energy of the vibrational state, E0 is the energy of the ground state, kB is Boltzmann’s constant, and T is the

temperature of the electrons in the material. This explains why anti-Stokes scattering is a weaker effect than

Stokes scattering. There are far fewer electrons that start in the vibrational state than in the ground state,

so the probability of one absorbing an incident photon is proportionally lower. However, the frequencies of

Stokes and anti-Stokes scattered light are symmetric around the frequency of the exciting photon. For this

reason, spectroscopists almost universally measure Stokes scattering rather anti-Stokes scattering.
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It is important to note that this neglects the fact that electrons are fermions. If there are a finite

number of momentum states at each energy level, this ratio is instead given by the Fermi-Dirac distribution,

which accounts for the Pauli Exclusion Principle. In the Fermi-Dirac distribution, the number of electrons

in a given state i of energy Ei is given by Ni =
[
e(Ei−EF )/kBT

]−1
. However, the trend is the same.

5.3.1.4 Resonance Raman

The above treatment relied on there not being an excited state that matched the energy of the incident

photon. However, Raman scattering still exists when such a state is allowed, although the timescale can

be much longer—the timescale was originally so short before because the virtual excited state could not

exist for very long. In this case, the probability of absorption and subsequent intensity of scattering is much

greater. Figure 5.8 shows resonant Stokes scattering for a generic two-level system under laser radiation.

Note that in the case of quantum mechanical systems, selection rules determine which modes are Raman or

IR active. These are more abstract symmetry arguments than the ones used for the classical picture of a

simple molecule.

Figure 5.8: Resonant Stokes scattering for a generic two-level system under laser radiation. Laser light
excites an electron from the ground state to an excited electronic state before that electron decays into a
vibrational state, emitting a lower-energy photon. Probability of absorption, and thus scattering is much
higher than in normal scattering because the excited state is an allowed electronic state.
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5.3.1.5 Connection to Band Structure

The following treatment draws heavily from the work of G.F. Dresselhaus et al. [51], who perform a

much more in-depth analysis. All of the Raman theory described above can be extended to band structure,

with one complication. In band structure, momentum plays a critical role in the state of a particular electron,

and allowed energy as a function of momentum can vary wildly (see section 2.2.1). While a vibrational state

usually has only slightly greater energy than any nearby purely electronic state, the momentum of a harmonic

oscillator state can be significant compared to the momentum of a purely electronic state. To reflect this, an

electron moving from an electronic state to a vibrational state is represented by “electron-phonon scattering,”

where the energy of an electron will change only slightly, but its momentum might change drastically.5 The

new energy and momentum may not appear to be an allowed state, since band structure is calculated purely

from an electronic perspective and the vibrational effects are a perturbation. However, it is allowed as

a superposition state of vibrational and electronic allowed states. After at least one such electron-phonon

scattering event, and perhaps one or more non-vibrational transitions, the electron must end up at its original

momentum, or it will move out to infinity and no scattering will be observed.

When the electron scatters into another purely electronic state after interacting with a phonon, this is

called a “resonance event.” The “resonance order” of a Raman scattering emission is equal to the number of

resonant transitions that occur between absorption and emission. For instance, consider the Stokes scattering

that causes the so-called G peak in the Raman spectrum of graphene (left Figure 5.9). In this scattering

event, an electron is excited from the valence band to the conduction band, scatters off of a phonon to an

energy slightly below the valence band but at approximately the same momentum, and then decays into

the valence band. This is called “single resonance” Raman scattering. On the other hand, consider Stokes

scattering that causes the 2D (also called the G’ peak) peak in graphene (upper right Figure 5.9). In this

event, an electron is excited into the conduction band from the valence band, scatters off of a phonon to

another allowed momentum state in the band structure with only slightly reduced energy, scatters off of

another phonon back to its original momentum (but at a lower energy than allowed by a purely electronic

band structure), and decays down into the valence band. This is called “double resonance” Raman scattering.

5 It is important to note that there are electron-phonon events where the momentum of the electron changes negligibly.
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Figure 5.9: Stokes scattering in the band structure of graphene, viewed near the Dirac point. Assumes
insulating phase (EF = 0). iTO represents in-plane transverse optical phonons. iLO represents in-plane
longitudinal optical phonons. e− represents the excited electron. h+ represents the hole left behind by
the excited electron. Left: The single-resonance event responsible for the G peak in graphene’s Raman
spectrum. An electron is excited from the valence band into the conduction band, scatters off of a phonon to
a lower energy with negligible change in momentum, and then decays back into the valence band, emitting
a photon. Center: Defect peaks. One-phonon double resonance processes responsible for the D peak (top,
spans two Dirac cones) and D’ peak (bottom, spans a single Dirac cone) in the Raman spectrum. An electron
is excited into the conduction band, then violates conservation of momentum by scattering off of a defect
in the graphene lattice, moving into another allowed state of the same energy in the conduction band. It
then scatters off of a phonon back to its original energy, but at reduced momentum, before decaying back
into the valence band and emitting a photon. The D peak will be discussed below. However, the D’ peak
is only presented as another example of a Raman process in graphene. Right: The double (top) and triple
(bottom) resonance processes that contribute to the 2D or G’ band in the Raman spectrum. Top right:
Double resonance. An electron is excited from the valence band into the conduction band, scatters off of a
phonon to an allowed state of lower energy in a nearby Dirac cone, scatters off of another phonon back to its
original momentum but at a further-reduced energy, and decays into the valence band, emitting a photon.
Bottom right: Triple resonance. An electron is excited from the valence band into the conduction band
and scatters off of a phonon into an adjacent Dirac cone. It then decays to another electronically allowed
state in the adjacent Dirac cone, emitting a photon, before recombining with its original hole, which has
scattered into the adjacent Dirac cone off of another iTO phonon. Images from L. M. Malard et al. [71].
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5.3.2 The Raman Spectrum of Graphene

This section will discuss the major landmarks in the Raman spectrum of graphene, acquired by

measuring the frequency of Stokes-scattered laser light off of the graphene surface at normal incidence.

Unless otherwise stated, all information in this section is contained in works by both G.F. Dresselhaus et al.

[51] and by L.M. Malard et al. [71]. In general, the spectrum is independent of the frequency of incident laser

light, since it is the difference between phonon energy and electron energy that matters. For this reason, the

spectrum is measured in Raman shift, with units of relative wavenumbers (rel. cm−1). With these units,

Raman shift is defined as

R.S.(λ) =
(

1
λ0
− 1
λ

)
× 107, (5.16)

where λ0 is the wavelength of the exciting laser in nm and λ is the wavelength of the Stokes-scattered light

in nm. These units give Stokes scattered light a positive shift and anti-Stokes scattered light a negative

shift, since the former is more likely to be measured. This has the added benefit of setting the energy of

a vibrational mode to be the same sign as the Raman shift. As Raman shift increases, so does the energy

of the phonon being measured. However, graphene does have some dependence, especially in the 2D peak

(discussed below). For the purposes of this work, it can be assumed that all Raman spectra were measured

with a laser wavelength of λ0 ≈ 632.8 nm unless otherwise stated. Every spectrometer is different, so absolute

intensities for spectral lines mean very little in Raman spectroscopy. Instead, the ratios of the peaks are

important. As such, the y-axis is usually in arbitrary units.

Since graphene has no bandgap and absorbs light at every frequency, all Raman scattering is resonance

Raman scattering. This means that graphene’s Raman spectrum is much more intense than for a material

with a bandgap. This is fortunate, since graphene has substantially fewer atoms in it to produce a Raman

signal than bulk materials, since a graphene layer is only one atom thick. In fact, it is resonance Raman

scattering that makes the Raman spectrum of graphene measurable at all—most substances only have a

measurable Raman spectrum in bulk. The spectrum from a thin film of silicon dioxide, for example, is

probably negligible. Resonance Raman peaks usually obey the Lorentzian distribution, or a superposition of

many Lorentzian distributions in the case of peaks near each other. A single Lorentzian-distributed Raman
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peak, I(∆ν), obeys the following equation:

I(∆ν) =
I0
π

[
w

(∆ν −∆ν0)2 + w

]
, (5.17)

where ∆ν is Raman shift, ∆ν0 is the center wavenumber of the peak, I0 is the amplitude of the peak, and w

is the full width at half maximum (FWHM) of the peak. Figure 5.10 shows an example of what the Raman

spectrum of graphene looks like, with the peaks labeled.

Because graphene is a two-dimensional system, it has become convention to name transverse phonons

as either in-plane (i) or out-of-plane (o). This convention is often extended to longitudinal phonons, though

it is somewhat redundant in the case of a two-dimensional material (for further discussion, see Dresselhaus

et al. [51]). All phonons that contribute to Raman scattering are so-called “optical phonons” (O), named

because they have energies and frequencies of approximately the same order of magnitude as light. This is

in contrast to “acoustic phonons,” (A), which have frequencies of the same order of magnitude as human-

audible sound. These symbols can be strung together: first in-plane or out-of-plane, then transverse or

longitudinal, and finally optical or acoustic. So, as an example, an in-plane transverse optical phonon would

be denoted as an iTO phonon.

Figure 5.10: A sample Raman spectrum of a graphene edge showing all of its salient peaks. From left to
right: D peak, G peak, D’ peak, and G’ or 2D peak. It is important to note that the edge of a graphene sheet
is a defect in the lattice, and thus this Raman spectrum represents low-quality graphene. Ideal undoped
monolayer graphene shows no D peak and a 2D peak at least twice as intense as the G peak. Image by
Malard et al. [71].
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5.3.2.1 The G Peak

The G peak of the Raman spectrum of graphene is present in all sp2-bonded carbon systems and is

named after “graphite.” Intuitively, it is generated by photons scattering off of transverse in-plane (iTO)

vibrations, a process described above and shown in Figure 5.9 (left). It is the center peak in Figure 5.10,

located at a Raman shift approximately 1585 rel. cm−1 with a full width at half maximum of about 13

rel. cm−1. It responds to strain, Fermi level shift (i.e., doping), and nearly any process that alters the

thermodynamic qualities of the system. How doping affects the G peak will be discussed later. However,

a simple and interesting example of how the environment can affect the G peak is uniaxial strain. In a

“pristine” state, graphene is totally unaffected by its environment, and the lattice is radially symmetric.

Because of this, iTO phonons with amplitudes of vibration in the x̂ direction, for instance, are the same as

those with amplitudes of vibration in the ŷ direction, where ŷ ⊥ x̂. However, as shown in Figure 5.11(A),

when strain along a single linear axis is applied to the sheet, this symmetry is broken, and vibrations parallel

to the strain axis have a lower energy than vibrations perpendicular to it. This causes the G peak to split,

as shown in Figure 5.11(B).

5.3.2.2 The 2D Peak

The 2D peak of the Raman spectrum of graphene, also called the G’ peak, is found at approximately

2680 rel. cm−1 with a full width at half maximum of approximately 24 rel. cm−1. It is generated by two

separate processes; the first is described above and shown in Figure 5.9 (top right). The second is shown in

Figure 5.9 (bottom right) and will be described now. An electron absorbs an incident photon and is excited

from the valence band into the conduction band. It then scatters off of an iTO phonon into an adjacent Dirac

cone. At the same time, the hole it left behind scatters off of another iTO phonon into the valence band of

the adjacent Dirac cone. The electron then decays into the valence band of the Dirac cone, recombining with

its hole and emitting a photon. It is difficult to intuitively understand what causes the 2D peak in the same

way as with the G peak because the double and triple resonance processes defy a first-order description.

However, the 2D peak is related to the radial breathing modes of the benzene rings in the graphene, which

grow and shrink and wiggle. For a much deeper description of these double and triple resonance processes,
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Figure 5.11: The effects of uniaxial strain on the G band of graphene. (A) The broken symmetry of the G
phonons under strain. Without a strain axis, all directions are the same. However, under a strain axis, the
G− band (top) has less energy than the G+ band (bottom). (B) The splitting of the G peak into the G+

and G− peaks in the Raman spectrum under uniaxial strain. Strain in units of % breaking point is listed
next to each measurement. Image adapted by Dresselhaus et al. [51] from Mohiudden et al. [72].

see Dresselhaus et al. [51].

These higher-order processes are extremely sensitive to perturbation such as doping (discussed later)

and energy of the exciting laser. As shown in Figure 5.12, the center wavelength of the 2D peak depends

linearly on the wavelength of the exciting laser. This dependence is related to the requirement that the

process be related across two Dirac cones. The state that the electron reaches in the second Dirac cone is

dependent on the energy it is excited to in the conduction band of the first cone, and thus on the excitation

energy.

5.3.2.3 The D Peak

The D peak of graphene, found at approximately 1350 rel. cm−1 with a FWHM of approximately

10 rel. cm−1, is related to a loss of momentum conservation. Loss of momentum conservation, in turn, is
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Figure 5.12: The wavelength dependence of the 2D band of graphene, (photon energy listed next to each
curve). The G∗ band is a higher-order peak than the 2D band and also depends strongly on exciting photon
energy. Image from Dresselhaus et al. [51].

enabled by defects in the graphene lattice. A hole in the graphene lattice or an edge to a flake can act as an

impenetrable wall and cause an electron or phonon to suddenly stop or scatter in a new direction, resulting

(from the perspective of the band structure) in conservation of energy but not of momentum.6 The process

resulting in the D peak is shown in Figure 5.9 (top center). An electron is excited from the valence band

into the conduction band, where it scatters off of a defect, changing its momentum so greatly that it ends

up in an allowed state in another Dirac cone. It then scatters off of an iTO phonon back to its original

momentum but at a lower energy than allowed by the strictly electronic band structure. The electron then

decays back into the valence band, emitting a photon and recombining with the hole it left behind. Since it

is proportional to the number of defects in the lattice, the intensity of the D peak relative to the intensities

of the other peaks is an extremely good indicator of the quality of a graphene sheet. Ideally, a graphene

sheet should have no D peak whatsoever. Depending on the spot size of the probing laser light, it is often

possible to approximate the region emitting scattered light as much smaller than the total sheet. In this

case, the intensity of the D peak can be used as a sensitive probe of the local quality of the lattice, and it

has been used to detect edges of the graphene crystal domains [73].

6 Momentum is actually conserved for the total system, but the electron or phonon’s momentum is lost to the large atomic
nuclei. This is analogous to a car hitting a cement wall. The large mass of the cement wall gives it a much greater momentum
than the car. So, the wall can absorb the momentum of the car without any apparent motion. Thus, although momentum
transfer occurs, it appears as if the car suddenly stops.
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5.3.3 Previous Work

Since Geim and Novoselov started the “graphene gold rush,” an enormous amount of time and effort

has gone into understanding the Raman spectrum of graphene. Two important topics in this research effort

are understanding the relationship between the number of layers of a graphene sheet and its Raman spectrum

and the behavior of doped graphene.

5.3.3.1 The Relationship Between the Number of Layers of Graphene and its Raman

Spectrum.

Early in the research effort focused on graphene, when high-quality sheets could only be attained by

mechanical exfoliation, it was important to be able to easily determine the number of layers—and the type

of stacking of those layers—of a graphene sheet easily and non-intrusively. “Lattice-matched” graphene is

stacked in such a way that the layers are highly ordered. This strongly affects the band structure. In contrast,

monolayers in so-called “turbostratic” graphene are stacked randomly. This has a weaker but non-trivial

effect on the band structure. Unfortunately, individual measurements by optical microscopy are difficult and

atomic force microscopy (AFM) damages the samples. A.C. Ferrari et al. established that the number of

layers of lattice matched graphne can be determined by the Raman spectrum of a sample [74]. Similarly,

L.G. Conçado and colleagues found a way to distinguish between monolayer and turbostratic multilayer

graphene [75].

The only noticeable difference between turbostratic multilayer graphene and monolayer graphene is

a broadening of the 2D peak. The FWHM of the 2D peak for turbostratic graphene is approximately

between 45 rel. cm−1 and 60 rel. cm−1. This is an important measurement to be able to make, since CVD

graphene grows turbostratically. Thus, Raman spectra can be used to determine the number of layers of

graphene grown by chemical vapor deposition. In contrast, the shape of the 2D peak changes drastically

for lattice-matched multilayer graphene. As Figure 5.13 shows, as the number of layers grow, the graphene

sheet becomes more and more like highly-ordered graphite. The intensity drops from greater than twice the

intensity of the G peak to about half. The 2D band further splits into a number of bands that superimpose

to generate an extremely broadened asymmetric peak.
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Figure 5.13: The Raman spectrum of lattice-matched graphene of many layers. (A) The Raman spectrum
of graphite compared to graphene measured with a laser excitation wavelength of λ0 = 514.5 nm. (B) The 4
Lorentzian peaks superimposed to produce the 2D peak of bilayer lattice-matched graphene. Top measured
at λ0 = 514.5 nm; bottom measured at λ0 = 633 nm. (C) The shape of the 2D peak as a function of number
of layers. Measured at λ0 = 633 nm. Image adapted from Ferrari et al. [75].

5.3.3.2 Doping

Two types of study have been performed on doped graphene. The first type of study performed

was on electrostatically-doped graphene, rather than chemically-doped graphene. To electrostatically dope

graphene, one places it between an electrode and a dielectric material in a capacitor. When a voltage

is applied, the dielectric material polarizes and develops a bound surface charge density. Intuitively, this

charge behaves like the H+ ions in chemical doping by a strong acid (see Figure 5.2) and attracts and

immobilizes charge within the graphene, effectively doping it. Figure 5.14 shows a possible electrostatic

doping experiment. A number of electrostatic doping experiments were performed on graphene. Works by

Novoselov et al. [29], J. Yan et al. [76], and A. Das et al. [77] will be discused: all of them show the same

basic trends.

As Figure 5.15 shows, studies of electrostatic doping found that center wavenumbers of both the G and

2D peaks initially increased in Raman shift—this is called “up-shifting” if the center wavenumber increases

and “down-shifting” if the wavenumber decreases—as the Fermi level moved away from the Dirac point.
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Figure 5.14: Electrostatic doping of graphene.

Eventually this trend reversed, but only for n-doping and for the 2D peak at extremely large Fermi-level

shifts. The G peak ratio also narrowed as the Fermi level shifted away from the Dirac point. However,

the most obvious change was in the ratio of the intensity of the 2D peak to the intensity of the G peak,

I(2D)/I(G), which decreased drastically with increased doping. This indicates that this ratio is a strong

indicator of Fermi level if the graphene is known to be monolayer. It is important to note that this ratio

can change depending on the substrate. Constructive and destructive interference in the substrate can cause

surprisingly drastic differences, and doping can vary widely by substrate material.

The second type of study was performed on chemically doped graphene by X. Dong et al. [78]. Dong

and colleagues doped graphene by a variety of organic molecules, attaining both electron- and hole-doped

graphene. They used a variety of known p-doping and n-doping organic molecules to attempt to shift the

Fermi level of their graphene samples, then measured the Raman spectra of those samples. They found

that their organic dopants induced a strong D peak in the material (see Figure 5.16), indicating that their

dopants damaged the graphene lattice. They also found that I(2D)/I(G) decreases rapidly with increased

doping level, just as the researchers who studied electrostatic doping found, which confirms that this ratio

is a strong indicator of doping level. However, Dong et al. had fundamentally different results concerning

the shifts of peaks. Both Dong et al. and those who studied electrostatically doped graphene found that the

2D peak up-shifts for both p-doped and n-doped graphene. However, Dong et al. found that the G peak

up-shifts for p-doped graphene and down-shifts for n-doped graphene. This indicates that chemical doping
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affects graphene in ways that electrostatic doping does not and that different molecules might have different

effects.

Figure 5.15: Raman Spectrum of electrostatically doped graphene. (A) The full Raman spectrum of the
doped graphene as a function of applied voltage (analogous to doping concentration). The applied voltage
in volts is marked next to each curve on the right of the plot. Red curve denotes undoped. In this case, a
positive voltage corresponds to electron doping, while negative voltage corresponds to hole doping. (B) The
FWHM of the G peak as a function of concentration of charge-carrying electrons in the material. (C) The
ratio of the intensity of the 2D peak compared to the intensity of the G peak as a function of Fermi level
(upper axis) and concentration of charge-carrying electrons (bottom axis). Image adapted from work by Das
et al. [77].

5.3.4 Our Study

To collaborate the results from Section 5.2, we performed Raman spectroscopy on samples doped by

various concentrations of nitric acid and to various Fermi levels as measured by spectrophotometer. The
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Figure 5.16: The doping of graphene by aromatic (for these purposes, organic) molecules. (A) The Raman
spectrum of pristine single-layer graphene, denoted SLG, compared to graphene doped by a strongly p-
doping aromatic molecule, denoted TPA. A D peak is induced and the G and 2D peaks both up-shift. (B)
The G (left) and 2D peaks (right) of graphene doped by various organic molecules. Ranges from strongly
n-doped (bottom) to strongly p-doped (top). (C) Ratio of the intensity of the 2D peak compared to the
G peak, I(2D)/I(G), for graphene doped by various organic molecules. Ranges from strongly n-doped (left)
to strongly p-doped (right). (D) Mean peak positions of the 2D (top) and G (bottom) peaks in terms of
dopant. Ranges from strongly n-doped (left) to strongly p-doped (right).

primary goal of this study was to confirm that doping was indeed occurring due to the acid and to confirm

that the process is reversible.

5.3.4.1 Methods

Samples grown by the method outlined in Appendix A.2.2 were baked at 150°C and then prepared

by immersion in various concentrations of nitric acid as in Section 5.2. We found that baking prevented

delamination in the nitric acid. Undoped samples were baked so as to remain consistent. The samples
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were then measured by Raman spectroscopy as quickly as possible—Nitric acid naturally evaporates into

the environment, so time is a critical factor—or first measured by spectrophotometry to discover the Fermi

level before being measured by Raman spectroscopy if a correlation was desired.

Raman measurements were performed on a home-built Raman microscope designed such that exciting

laser light is at normal incidence to the sample and only light that scatters upwards at a small angle off of

the normal is detected. The excitation was provided by a 633 nm HeNe laser. The laser light was focused to

a spot size of approximately 1 µm by a 0.8 NA objective (Olympus 50x, MPlan FL). The Raman scattered

light is spectrally filtered with a 160 cm−1 cut-off filter (Semrock, LP02-633RU-25) and detected with a

spectrometer with a 1200 g/mm grating (Newport, 53-*-220H) for single-peak measurements or a 600 g/mm

grating (Newport, 53-*-350R) for measurements spanning the full relevant spectrum of graphene, and a

liquid nitrogen-cooled CCD (Princeton Instruments, Spec-10 2KB/LN). The spectrometer required some

calibration, the details of which can be found in Appendix B.

B. Krauss et al. [79] found that laser light of even moderate intensity can cause damage to a graphene

lattice over time. They report change in the Raman spectrum for intensities > 1.25 kW/cm2 after several

hours. To avoid damaging the sample or removing adsorbants with thermal effects, we kept the total

power at the sample between 0.5 and 3 mW (< 1 kW/cm2). We further ensured that our samples were

never exposed on a single spot for more than 10 minutes. To confirm that our measurements were non-

intrusive, an extremely short measurement was made before and after the longer integration-time, more

precise measurements to confirm no change in the spectrum.

After Raman spectra were measured, a clean signal was extracted by using the algorithms found in

Appendix C. The amplitudes of individual peaks were then measured and peaks were fit to Lorentzian

distributions to find their center wavenumbers and FWHM values (see Appendix C). It is important to

note that because the D peak was often difficult to distinguish from background noise, we intentionally

overestimated its intensity so as to generate conservative estimates of the quality of our graphene.
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Figure 5.17: Mean peak positions and FWHMs as a function of doping concentration. On this scale, error in
doping concentration is negligible. (A) Center wavenumber of the G peak. After initial doping, the G peak
up-shifts significantly. It then slowly recovers with increased doping concentration. (B) Center wavenumber
of the 2D peak. The 2D peak follows the same trend as the G peak. (C) The full width at half maximum
of the G peak. The peak first narrows and then broadens again with increased doping. (D) The full width
at half maximum of the 2D peak. It follows the same trend as the G peak.

5.3.4.2 Results

Initially, the Raman spectrum of graphene doped by various concentrations of nitric acid was measured.

Figure 5.17 shows the effects of concentration of nitric acid dopant on the positions and widths of the peaks.

After initial doping, both G and 2D peaks up-shift and narrow significantly, as observed in electrostatic

doping [29, 76, 77] and in chemical doping by organic molecules [78]. As shown in Figure 5.18(A), we

observed an initial decrease in the intensity of the 2D peak with respect to the G peak, I(2D)/I(G), as

observed in both electrostatic and chemical doping [29, 76, 77, 78]. Fortuitously, we also observed almost

no dependence on doping of the relative intensity of the D peak compared to the intensity of the G peak,

I(D)/I(G) (see Figure 5.18(B)), indicating that the acid did not damage the graphene lattice.
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We also never observed an I(D)/I(G) ratio greater than 0.15, which indicates that our samples were

of high quality. This is in contrast to the work of Dong et al., who reported an increase in I(D)/I(G) after

doping by aromatic molecules [78]. Our undoped samples showed a single 2D peak with a FWHM ranging

from 33 rel. cm−1 to 40 rel. cm−1, indicating that the samples contained a mixture of monolayer and

bilayer graphene—although the <2.3% absorption measured in differential transmission indicates that it was

likely mostly monolayer, as expected. While ultra-low pressure CVD self-limits to produce mostly monolayer

sheets, it has been observed that the nucleation site at the center of a crystal domain can be partly bilayer

graphene [73].

Figure 5.18: Dependence of relative intensities on doping concentration. Left: Dependence for ratio of
intensities for D and G peaks, I(D)/I(G). Variation of I(D)/I(G) is statistically insignificant, with variation
almost as great as its (very small) magnitude. Right: Dependence for ratio of intensities for 2D and G peaks,
I(2D)/I(G). After doping, there is a clear initial decrease in this ratio. However, subsequent trends (if any)
are statistically insignificant.

However, with increased doping, we observed that the peaks began to recover, both down-shifting

towards their original positions and broadening towards their original widths. This behavior diverges from

that observed previously in either electrostatic doping or chemical doping [29, 76, 77, 78]. It is unclear if

the behavior of I(2D)/I(G) diverges, since the decrease in this ratio becomes much less dramatic after the

Fermi level has shifted substantially from the Dirac point. It is worth noting that uncertainty increases

drastically with doping concentration, making exact behavior unclear. This is likely due to some spatial

dependence of doping concentration (see Section 5.2), whose variance increases with concentration. This is

not inconceivable, since nitric acid contains a high density of H+ ions, which repel each other. The higher

their concentration, the more likely they are to interact in some complicated way.
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The following question then arises: Is there some systematic effect that causes the doping concentration

to fail to accurately correlate to the shift of the Fermi level away from the Dirac point? It is possible that

doping by nitric acid simply has poor reproducibility. Alternatively, it is possible that the dopant is removed

by heating due to the laser used to excite Raman scattering, or simply by the time delay between doping

and measurement.

To answer this question, we first measured the Fermi level of our doped graphene by spectrophotometry

before measuring its Raman spectra. We ensured that we measured the Raman spectra of graphene doped

to disparate Fermi levels by increased doping concentration if the Fermi level did not shift enough. Listed

Fermi levels are approximate, since a more exact Figure with a listed uncertainty would only distract from

any observed trends. The uncertainty in these values is small compared to a change in energy of more

than 100 meV. We also baked the sample that had been doped to EF ≈ 200 meV at 100°C for 1 hour

to remove dopants and determine if the process is reversible. Figure 5.19 shows representative spectra of

pristine graphene and graphene doped to Fermi levels of approximately 200 meV and 400 meV, as well as

the spectrum of the sample that was baked after doping.

As shown in Figure 5.20, the peaks of graphene doped to various Fermi levels show the same up-

shift after initial doping and then recovery with increased doping. In fact, this recovery is even more

dramatic, indicating that the effect is not correlated with an inconsistency in Fermi level shift due to doping

concentration. Although the change in I(2D)/I(G) is not large compared to the variance at higher doping

levels, the initial drop after doping is likely significant, and the mean value continues to monotonically

decrease with increased doping level, which is consistent with previous measurements on electrostatically-

doped graphene [29, 76, 77] or graphene doped by aromatic molecules [78]. We thus conclude that the

oscillation we observe in the center wavenumbers of the G and 2D peaks is a reproducible effect from doping

by nitric acid. Since the Raman spectra of graphene doped by nitric acid is, to our knowledge, a never-

before-studied phenomenon, it seems reasonable to believe that we do not observe this effect through error.

Since the initial up-shift, peak narrowing, and monotonic shift in peak ratios are consistent with previous

results [29, 76, 77, 78], we further conclude that we are indeed doping our graphene.

The sample that was baked after being doped to EF = 200 meV exhibited full recovery. In fact,
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Figure 5.19: The Raman spectrum of graphene doped to various Fermi levels by nitric acid. The lack of a D
peak indicates the high quality of the pristine samples and that doping by nitric acid does not damage the
doped samples.

it down-shifted an additional 3.5 rel. cm−1 for the 2D band and an additional 1.87 rel. cm−1 for the

G band beyond the undoped sample. Furthermore, the I(2D)/I(G) ratio increased to about 2.6. All of

these changes imply extremely pristine graphene. Because graphene is very sensitive to surface adsorbents,

including water in the atmosphere [29], it is very likely that baking after doping also removed the adsorbents

that had accumulated on the graphene sheet in the time between initial sample preparation of the undoped

sample and its measurement in Raman. This would account for the seeming increase in purity after doping

and baking. As such, it is reasonable to conclude that this process is reversible.

In summary, then, graphene hole-doped by nitric acid shows decreased saturable loss as measured by

differential transmission, shifted Fermi level as measured by spectrophotometry, and shifts in peak location

and intensity ratios as measured by Raman spectroscopy. Furthermore, Raman spectral measurements in-

dicate that this doping process is reversible and does not induce any defect in the carbon lattice. While

it is true that the behavior of the Raman spectra we measured of graphene doped by nitric acid are not
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Figure 5.20: Trends for graphene doped to various Fermi levels by nitric acid. Here “|µ|” represents EF ,
undoped represents baked but never doped, and “baked” represents baked after doping. (A) Mean G peak
position. (B) Mean 2D peak position. (C) Ratio of intensities of the D and G peaks. As before, this indicates
no defects. (D) Ratio of intensities of the 2D and G peaks. FWHM of peaks not shown because the variation
is too large for any change to be significantly significant.

entirely consistent with previous measurements, they are consistent enough to lend them some credibility.

Furthermore, the primary goal of these measurements was to corroborate evidence from differential trans-

mission and spectrophotometry measurements indicating that the optical properties of graphene are tunable

by chemical doping for application in mode-locked lasers. Our Raman spectra indicate that doping does not

damage the lattice, that the process is reversible, and that doping is occurring. These results meet the goals

of our study. However, since nitric acid is sometimes used to alter the conductivity of graphene [11], the

behavior of its Raman spectrum under the effects of nitric acid certainly merits more study.



Chapter 6

Conclusions And Outlook

In the course of this work, the mechanisms of mode-locking, semiconductor physics, and Raman

spectroscopy have been—at least superficially—established. By reproducing the work of Li et al. [63, 66,

67, 68], a method of generating graphene for ultrafast applications has been developed. By measuring the

nonlinear absorption of graphene, its applications as a saturable absorber for ultrafast lasers have been

explored. Furthermore, we have used spectrophotometry to measure changes in graphene’s Fermi level due

to chemical doping, and we have correlated these measurements to changes in the nonlinear behavior of

graphene due to a shifted Fermi level. We have used Raman spectroscopy measurements to confirm that

doping is occurring and that the doping process is both non-damaging and reversible.

Although the growth process developed did not generate graphene with sufficiently high damage

thresholds or sufficiently low saturation intensities/fluences for use as a saturable absorber comparable to

SESAMs, it did bear fruit. It was a critical step in our development of other graphene-based optical devices

and it enabled the study of the tunable optical properties of graphene by doping. This study of tunable

optical properties served as a pilot study for—and a critical stepping-stone towards—a graphene-based

ultrafast electro-optic modulator (EOM).

Because of graphene’s linear dispersion near the Dirac point (i.e., its Dirac cones), it is an extremely

fast conductor and can carry very high-frequency electronic signals [12]. It is therefore possible to use elec-

trostatic doping to adjust graphene’s linear absorption very quickly and create an extremely high-frequency

optical switch, thus constructing an ultrafast EOM. It is possible that a graphene-based EOM could react

quickly enough to suppress Q-switching instabilities in a laser mode-locked by other means. Our optimization
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of CVD methods made the graphene for this system available, and our study of tunable optical properties by

differential transmission, spectrophotometry, and Raman spectroscopy gave us the understanding to attempt

building such a device.

Through the hard work and insight of Seiya Suzuki, Chien-Chung Lee, Wanyan Xie, and Prof. Thomas

Schibli, a prototype of this EOM has been realized as a mirror structure (see Figure 6.1). The structure

consists of a ring electrode on the surface of the mirror structure to apply a voltage across the graphene

sheet. Below the graphene sheet, tantalum pentoxide (Ta2O5) is used as a transparent dielectric to supply

the doping effect; beneath the Ta2O5, an aluminum bottom electrode acts as the mirror. The thickness

of the dielectric layer is designed so that constructive interference produces a strong electric field at the

graphene layer, amplifying its effect on the absorption of the device. At the time of writing, a device has

been fabricated and tested for a laser with wavelength λ = 1550 nm. Figure 6.2 shows the device in action.

The device has shown a modulation depth as large as 0.8% of the incident laser light over a large

surface area and has been shown to function at frequencies as high as 10 MHz (frequency detection limited

by measurement devices). Admittedly, 10 MHz is not ultrafast. However, with optimization, the device

should eventually be able to function in the GHz or THz regime. To conclude, then, graphene may yet find

a home in ultrafast mode-locked lasers.
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Figure 6.1: A schematic of a graphene-based electro-optic modulator.

Figure 6.2: A graphene-based EOM prototype. Left: An optical image of the device showing the top ring
electrode. Right: A two-dimensional scan of the device’s modulation depth in percent. Scan is for the same
device as shown on the left.



Appendix A

Final Graphene Growth Recipes and Transfer Method

A.1 Transfer Method

(1) From a sample of copper with graphene grown on it, carefully cut a roughly square piece, about the

width of a microscope slide (preferably a little less wide than the slide). Place it on the center of a

slide, graphene side up, and tape the edges so that the foil is as flat as possible.

(2) Pipette 3-4 drops of poly(methyl methacrylate) (PMMA)–or enough to cover the entire foil–onto the

sample.

(3) Spin-coat the sample: Put on spinner for 120s. Set the spinner so that it measures 12,000 rpm.

Acceleration is mostly irrelevant.

(4) Let PMMA cure on copper for about 12 hours. Keep it somewhere free of contamination.

(5) Make 0.5 M etchant: 27 g ferric chloride hexahydrate (Alfa Aesar) in 200 ml DI water. Assume that

1mL = 1g and measure DI water out by mass.

(6) With tweezers, place graphene/copper piece in etchant bath with PMMA side up.

(7) Wait and watch by eye. The copper will disappear, leaving graphene/PMMA floating on top of the

used etchant. Samples typically take about 30 minutes for the copper to etch away.

(8) Transfer the released graphene to reactant grade DI water with a smooth plastic spoon and soak

until the water changes color. A wide, high-volume container is best. Large volume is desirable
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because a larger ratio of water picked up in the spoon to water in the container results in faster

cleaning. Wide is desirable because this provides the maximum surface area of water, making it

easier to move the graphene/PMMA with a spoon.

(9) Repeat as needed using a new water bath. When the water doesn’t change color after 2 hours,

transfer the graphene to spectrograph-grade DI water and wait for a minimum of five minutes.

(10) Transfer the graphene sample to a substrate: Scoop up the graphene with the substrate, and the

graphene will stick so that it can be pulled out of the water, then carefully dry the substrate by

dabbing the edges of the graphene sheet with a Kimwipe. Alternatively, transfer the graphene to the

substrate via spoon: Lift the graphene from the water with the spoon, remove all but a small drop

of water from the spoon by dabbing it with a Kimwipe, carefully pour the drop and the graphene

onto the substrate, and remove the rest of the water from the substrate by dabbing with another

Kimwipe. Substrate must be insoluble in water and in organic solvents.

(11) Wait about 12 hours to dry (again, away from contamination).

(12) Place substrate in chloroform bath at 60 C for 10 minutes.

(13) Gently rinse with acetone and methanol, in that order.

(14) Place substrate back in chloroform bath at 60 C for 10 minutes.

(15) Gently rinse again with acetone and methanol, in that order.

(16) Place substrate in ambient temperature IPA for 10 minutes.

(17) Gently rinse again with acetone and methanol, in that order.

(18) Gently blow dry with nitrogen gun.
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A.2 Selected Recipes for Graphene Sheets and for Large Domain-Size

Graphene Flakes.

A.2.1 Recipe for Graphene Sheets

Place the flattened copper foil in the reaction chamber, and lower the pressure to approximately 0

mTorr. Heat the chamber to approximately 1000°C, which takes approximately 1:10h. During the heat-up

phase, expose the copper to a gas flow of 5 sccm of hydrogen, which raises the pressure to approximately 14

mTorr. After the target temperature is reached, allowed the copper to anneal in the same 5 sccm hydrogen

flow for approximately 30m. After annealing, expose the copper to 1 sccm of hydrogen and 1 sccm of methane

for approximately 30m. The pressure during the first growth phase is approximately 4 mTorr. After the

first growth phase, expose the copper to 10 sccm of methane and 1 sccm of hydrogen for 5m. The pressure

during this phase is approximately 20 mTorr. After the two growth phases, allow the copper to cool to room

temperature under a gas flow of 1 sccm of hydrogen. Rapid cool-down can be effected by moving the sample

out of the furnace immediately after the growth phase. Cool-down takes approximately 1h. After cool-down,

turn the vacuum pump off and fill the reaction chamber with an argon atmosphere, with a flow rate of 50

sccm, to bring the pressure up to atmospheric normal.

A.2.2 Recipe for Large Domain-Size Graphene Flakes

Place the flattened copper foil in the reaction chamber, and lower the pressure to approximately 0

mTorr. Heat the chamber to approximately 1000°C, which takes approximately 1:10h. During the heat-up

phase, expose the copper to a gas flow of 5 sccm of hydrogen, which raises the pressure to approximately 14

mTorr. After the target temperature is reached, allow the copper to anneal in the same 5 sccm hydrogen flow

for approximately 30m. After annealing, expose the copper to 10 sccm of hydrogen and 0.2 sccm of methane

for approximately 3h. The pressure during the growth phase is approximately 22 mTorr. After the growth

phase, allow the copper to cool to room temperature under a gas flow of 1 sccm of hydrogen. Cool-down takes

approximately 1h. Rapid cool-down can be effected by moving the sample out of the furnace immediately

after the growth phase. After cool-down, turn the vacuum pump off and fill the reaction chamber with an



94

argon atmosphere, with a flow rate of 50 sccm, to bring the pressure up to atmospheric normal.



Appendix B

Calibration of the Home-Built Raman System

B.1 Y-Axis Calibration

Initial measurements on the Raman spectrum of graphene showed a strong background signal. It was

thus necessary to determine if this background could safely be subtracted away to generate a clean signal. To

determine whether the intensities on the spectrometer were accurate with or without this background signal,

the spectrum of n-Hexane was measured and compared to the results of other groups. n-Hexane was chosen

because it is a liquid, requiring little to no sample preparation that could cause inconsistency; because it

has well-defined peaks in the same range as graphene; and because it is a well understood material that has

been measured several times since the inception of Raman spectroscopy.

As a first guess, we subtracted the background from the n-Hexane measurements we made and com-

pared the resulting spectrum to measurements made by the following sources: a product demonstration of

a Newport spectrometer [80], the work of F.T. Cleveland and P. Porcelli [81], E.J. Rosenbaum et al. [82],

V.S. Gorilek et al. [83], and the Raman/Infrared Atlas of Organic Compounds compiled by B. Schrader

[84]. These sources were grouped into two categories: modern sources that made measurements with a

modern CCD camera1 and pre-CCD camera sources. Because absolute intensity means very little in Raman

spectroscopy, the ratios of various obvious peaks in the spectrum were chosen for comparison. Figure B.1

shows the spectrum, with chosen peaks labeled. The names given to these peaks are completely arbitrary

and do not reflect any convention.
1 A CCD camera detects light by absorbing a photon in a semiconductor, thereby exciting a charge. This charge is caught

in a potential difference and pulled into an amplifier in the camera, which reads the absorption as a pixel lighting up.
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Figure B.2 shows the ratios of peak intensities for different measurements of n-Hexane grouped by the

era in which they were performed. It compares our measurements to pre-CCD and post-CCD measurements.

In every chosen ratio, our measurements are at approximately the mode value, implying that subtracting

the background is the proper thing to do. Figure B.3 then shows the method by which we subtract our

background for a specific graphene sample. Points that are part of peaks are first removed from the spectrum.

A higher-order polynomial is then fitted to the remaining points. Finally, this polynomial is then subtracted

from the original spectrum to produce a clean signal. This analysis can be performed in batches using the

scripts written in appendix C.

B.2 X-Axis Calibration

There was later found to be an error in the wavelength values measured by the Raman system. To

correct for this, emission lines from a neon gas lamp were used to correlate measured wavelength values to

actual wavelength values. Measurements of the neon lamp were performed by Joanna Atkin.
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Appendix C

Python Scripts Used to Analyze Raman Data

The following scripts were written for the Python interpreter1 to batch analyze large quantities of

Raman measurements. They are called by command line2 on any number of files in the filesystem. To

be most effective, the operating system they are used in needs to support globbing.3 Python was chosen

because its intuitive syntax is flexible and easy to learn and because a substantial number of packages for

advanced mathematics, matrices, numerical analysis, and plotting have been developed in the C programming

language4 by the teams for Scipy [85] and Matplotlib [86]. These libraries can be called with the import

command. Because the relevant algorithms were written in C and Python merely glues them together,

Python is faster and less resource-intensive than other interpreted languages. Incidentally, although the

author did not know at the time of research, there is an entire library of Python code devoted to spectrum

analysis called Peak-O-Mat [87].

C.1 rayleigh.py: The Offset Calculator

The Raman spectrometer used to make measurements uses a diffraction grating to generate scattered

spectra. However, this grating cannot cover the entire wavelength range the spectrometer can measure, so

it must move in order to cover the whole range. To generate a mean and variance for the offset caused by
1 Python is an interpreted language as opposed to a compiled one. A program called the interpreter reads every human-

readable Python script—contained in an ASCII text file—and executes the commands in it in order.
2 The command line is the text-based interface underneath most operating systems. Examples include MSDOS for Microsoft

Windows, Unix for Apple’s MacOS, and the Linux kernel for any Linux-based operating system.
3 Globbing refers to a command structure where a command is called for a number of arguments at once, rather than calling

them one at a time. This is a great time-saver for whomever calls the command.
4 C is an extremely popular compiled language. A human-readable program is written in an ASCII text file and a program

called a “compiler” takes this text file and converts it into assembly, which the computer’s firmware can read.
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any inconsistency in this motion, the first-order Rayleigh-scattered light5 was measured at approximately

630 nm after every measurement. The rayleigh.py program takes a number data files containing lists of

wavelengths and intensities measuring the Rayleigh scattering, extracts the wavelength corresponding to the

peak intensity in each file, and takes the mean and standard deviation. It then generates a new data file

with this information in it.

————- BEGIN PYTHON SCRIPT ————-

1: #!/usr/bin/env python

2: #The above line tells the unix/linux shell where the Python interpreter is.

3: #By Jonah Miller

4: #This program goes through Rayleigh line data and finds the mean shift

5: #in nanometers and the standard deviation

6:

7: import sys, os

8: import numpy as np

9: import scipy as sp

10: import scipy.optimize as op

11: import time

12:

13: ray = [ ]

14: filenames = [ ]

15: line = 633

16:

17: #The function to convert wavelength (nm) to Raman shift (cm−1).

18: def rs(wavelength,laser):

return ((float(1)/laser)-(float(1)/wavelength))*(10**7)

5 Most Rayleigh-scattered light is filtered away, but some passes through the filter and can be measured on the spectrometer.
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19:

20: def main(argv): #Goes through a file and find the peak position of the Rayleigh line

f = np.loadtxt(argv).transpose() #Opens the file

maxi = np.amax(f[1]) #Finds the value of the peak of the rayleigh line

intensity = [f[1,i] for i in range(len(f[1]))] #Extracts the array into a list

indi = intensity.index(maxi) #Finds the index of the rayleigh line

ray.append(f[0,indi])

filenames.append(str(argv))

21:

22: for filename in sys.argv[1:]:

main(filename)

mean = np.mean(ray)

StandardDeviation = np.std(ray)

median = np.median(ray)

variance = np.var(ray)

23:

24: ramanshift = [rs(ray[i],line) for i in range(len(ray))]

rsmean = np.mean(ramanshift)

rsSD = np.std(ramanshift)

rsmedian = np.median(ramanshift)

rsvariance = np.var(ramanshift)

25:

26: tname = str(time.asctime())

27:

28: output = open(’rayleigh ’+tname+’.dat’,’w’)

29: output.write(’#The files used for this compilation are:\n’)

30: for i in range(len(filenames)):
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output.write(’#’+filenames[i]+’\n’)

31: output.write(’The wavelengths of the Rayleigh line are (in nm):\n’)

32: for i in range(len(ray)):

output.write(str(ray[i])+’\ n’)

33: output.write(’The raman shifts of the rayleigh line for ’+str(line)+’nm are (in rel. cm∧(-1):\ n’)

34: for i in range(len(ray)):

output.write(str(ramanshift[i])+’\n’)

35: output.write(’Mean = ’+str(mean)+’nm, or ’+str(rsmean)+’ rel. cm∧(-1)\n’)

36: output.write(’Standard Deviation = ’+str(StandardDeviation)+’ nm, or ’+str(rsSD)+’ rel. cm(̂-1)\n’)

37: output.write(’Median = ’+str(median)+’nm or, ’+str(rsmedian)+’ rel. cm∧(-1)\n’)

38: output.write(’Variance = ’+str(variance)+’nm or, ’+str(rsvariance)+’ rel. cm∧(-1)\n’)

39: output.close()

————- END PYTHON SCRIPT ————-

C.2 RamanRecalibration.py: Batch Data Preparation For The Holographic

Grating

The holographic grating on the Raman Spectrometer offers extremely high wavelength resolution, but

has a small range over which a spectrum can be viewed in a single measurement: only wide enough to view

the D and G peaks or the 2D peak of graphene. This grating was used to measure the peak-shift of doped

graphene, while the 600BLZ grating (discussed below) was used to measure the change in peak ratios of

aforementioned doped graphene. Unfortunately, the holographic grating had some x-axis calibration issues

and a linear tilt in the background signal. The RamanRecalibration.py program recalibrates the x-axis prop-

erly, removes the linear tilt, removes cosmic events which deviate dramatically from a rolling mean/variance,

normalizes all peaks so that a single spectrum ranges from 0 to 1 in intensity, and shifts the x-axis from

nanometers to relative wavenumbers (rel. cm−1). A new file is then generated with the data points for the

analyzed data.
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————- BEGIN PYTHON SCRIPT ————-

1: #!/usr/bin/env python

2: #The above line tells the unix/linux shell where the Python interpreter is.

3: #By Jonah Miller

4: #This program goes through Raman Data, finds cosmic events, and removes them.

5: #It also crudely normalizes the curve so that intensities range from 0 to 1 and removes

a linear background tilt.

6:

7: import sys, os

8: import numpy as np

9: import scipy as sp

10: import scipy.optimize as op

11: import sys

12:

13: #Calibration data for a line, y=mx+b. Y = measured value as a function of actual value

for x-axis.

14: #Of the form [(range minimum, range maximum),Y-intercept,error,slope]

15: calidat =[[(600.0001,620),29.84448,0.25058,0.9501],

[(620.0001,640),32.17773,0.23099,0.94816],

[(640.0001,660),33,47419,0.39073,0.94765],

[(660.0001,680),36.13659,0.34418,0.94519],

[(680.0001,700),38.35243,0.6073,0.94367],

[(700.0001,720),41.08542,0.05285,0.94124],

[(720.0001,740),41.02096,0.07158,0.94306],

[(740.0001,8000),44.2601,1,0.94022]]

16:
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17: ray = 632.792 #The position of the Rayleigh scattering line. This is assumed to be the

laserline.

18: laserline = np.array([[ray],[1337]]) #for the purposes of fitting into the calibration function.

19:

20: #Calibrates the x-axis

21: def calibrate(dataset,calibration):

xax = [ ]

for i in range(len(calibration)):

segment = [dataset[0,j] for j in range(len(dataset[0])) if calibration[i][0][0] < dataset[0,j] < calibra-

tion[i][0][1]]

segment = [(segment[j]-calibration[i][1])/calibration[i][-1] for j in range(len(segment))]

xax = xax+segment

return np.array([xax,dataset[1]])

22:

23: #The Raman shift equation.

24: def shift(ls,x):

return ((1./float(ls))-(1./(float(x))))*(10**7)

25:

26: #Calibrates the rayleigh line as well

27: laserline = calibrate(laserline,calidat)

28: laserline = laserline[0,0]

29:

30: def main(argv):

31: f = np.loadtxt(argv)

32: d = f.transpose()

33:

34: rs = [ ]
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35:

36: #Replaces the x-axis with a Raman shift from the laser line specified

37: d = calibrate(d,calidat)

38:

39: for i in range(len(d[0])):

rs.append(shift(laserline,d[0,i]))

40: d = np.array([rs,d[1]])

41:

42: #Deletes points that vary from the mean by too much

43: def prune(numbers,width,tolerance):

anomalous = np.zeros(len(numbers[0]))

for i in range(width,len(numbers[0])-width):

temp = [numbers[1,j] for j in range(i-width,i+width)]

test.append(temp)

mean = np.median(temp)

variance = np.std(temp)

if numbers[1,i] ¿= mean+variance*tolerance:

anomalous[i]=1

intensity = [numbers[1,k] for k in range(len(numbers[0]))]

rs = [numbers[0,i] for i in range(len(numbers[0]))]

rshift = rs

for l in range(len(rshift)):

if anomalous[l] == 1:

intensity[l] = ’badpoint’

rs[l] = ’badpoint’

while intensity.count(’badpoint’) != 0:

intensity.remove(’badpoint’)
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while rs.count(’badpoint’) !=0:

rs.remove(’badpoint’)

return np.array([rs,intensity],float)

44:

45: processed = prune(d,7,2) #Prunes an array of data of any points "tolerance"=7 standard

deviations away from a rolling mean of radius "width"=2

46: rs = [processed[0,i] for i in range(len(processed[0]))]

47: processed = prune(processed,7,2)

48:

49: #Makes the plot go from 0 to 1

50: lhsy = [processed[1,i] for i in range(0,5)]

51: rhsy = [processed[1,-i] for i in range(0,5)]

52: lhsx = [processed[0,i] for i in range(0,5)]

53: rhsx = [processed[0,-i] for i in range(0,5)]

54:

55: m = (np.median(rhsy)-np.median(lhsy))/(np.median(rhsx)-np.median(lhsx)) #Finds the linear tilt

56: processed[1] = processed[1] - (m*processed[0]) #Removes any linear tilt

57: processed[1] = processed[1]-np.amin(processed[1]) #Subtracts away the DC background

58: processed[1] = processed[1]/np.amax(processed[1]) #Normalizes the function

59:

60: #Output

61: dname = ’Recalibrated ’+str(ray)[:3]

62: a = os.access(dname,1)

63: if a == False:

os.mkdir(dname) #Creates a new directory for the output files

64: outputfile = open(dname+’/’+argv.rstrip(’.dat’)+’ ’+dname+’.dat’,’w’)

65:
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66: for i in range(len(processed[0])):

outputfile.write(’%s %s\n’ % (processed[0,i], processed[1,i]))

67:

68: outputfile.close()

69: return

70:

71: for filename in sys.argv[1:]:

main(filename)

————- END PYTHON SCRIPT ————-

C.3 raman fs.py: Batch Data Preparation for the 600BLZ Grating

The 600BLZ grating can view a wide enough spectrum that the entire relevant Raman spectrum of

graphene is visible. It has no x-axis calibration error. However, it does have a strong background signal

that behaves like part of a higher-order polynomial. Calibration efforts showed that this polynomial can be

subtracted from the desired signal without error (see Appendix B). The raman fs.py program converts a

wavelength-based spectrum into the wavenumber (rel. cm−1) domain. It then removes cosmic events which

deviate dramatically from a rolling mean/variance. Then it removes the background curve by generating

a set of data points that contain only background information, fitting a polynomial to this data, and then

subtracting the fit from the original spectrum. Finally, the plot is normalized so that the intensity of the

spectrum ranges from 0 to 1. A new file is then generated with the data points for the analyzed data.

————- BEGIN PYTHON SCRIPT ————-

1: #!/usr/bin/env python

2: #The above line tells the unix/linux shell where the Python interpreter is.

3: """

By Jonah Miller
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This program goes through Raman Data, finds cosmic events, and removes them. It also crudely

normalizes the curve so that intensities range from 0 to 1. If the background peaks are

not in the expected places, or if the background cannot be approximated by a higher order

polynomial, this normalization will fail. This should be used for wide spectral widths

of graphene, but it is possible to edit the script to work for other spectra.

"""

4:

5: import sys, os

6: import numpy as np

7: import scipy as sp

8: import scipy.optimize as op

9: import sys

10:

11: def polynomial(x,a0,a1,a2,a3,a4): #A 4th degree polynomial

return a0+a1*x+a2*(x**2)+a3*(x**3)+a4*(x**4)

12:

13: def background(spectrum,peakbounds): #Generates a background dataset from a spectrum so that

this background can be fitted to and then subtracted later

copy = [[i for i in spectrum[0]],[i for i in spectrum[1]]] #Generates a copy of the spectrum to

play with so that the original is unchanged

peaks = [[i for i in copy[0] if j[0]¡=i¡=j[1]] for j in peakbounds] #Generates a list of lists of

the x-values where the peaks might be

points = [ ]

for i in range(len(peaks)):

points.extend(peaks[i])

locations = [copy[0].index(i) for i in points] #The indices of each x value in the range of a

specific peak
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for i in locations: #Marks each point in a peak by setting it as a ‘‘not a number’’ (NaN)

value ’peakpoint’ for removal later

copy[0][i] = ’peakpoint’

copy[1][i] = ’peakpoint’

while copy[0].count(’peakpoint’) != 0: #Removes the marked points

copy[0].remove(’peakpoint’)

while copy[1].count(’peakpoint’) != 0:

copy[1].remove(’peakpoint’)

return np.array([copy[0],copy[1]])

14:

15: def shift(ls,of,x):

return ((1./float(ls))-(1./(float(x)+of)))*(10**7)

16:

17: #Some important values

18: laserline = 633 #The wavelength of the laser exciting the Raman scattering in nanometers

19: ray = 632.7555 #The position of the Rayleigh scattering line

20: offset = 633-ray #The amount the x-axis must be shifted to place the Rayleigh scattering line

at 0 rel. cm−1

21:

22: Dlhs = 1331 #The estimated beginning of whatever D peak there might be.

23: Drhs = 1377 #The estimated end of whatever D peak there might be.

24: mp1lhs = 1435 #The estimated beginning of the first mystery peak

25: mp1rhs = 1486 #The estimated end of the first mystery peak

26: Glhs = 1525 #The estimated beginning of the second mystery peak and the G peak

27: Grhs = 1650 #The estimated end of the G Peak

28: mp2lhs = 2074 #The estimated beginning of the 3rd mystery peak

29: mp2rhs = 2116 #The estimated end of the 3rd mystery peak
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30: GPlhs = 2413 #The estimated beginning of the G∗ and G prime peaks

31: GPrhs = 2689 #The estimated end of the G prime peak and mystery peak after it

32: peaklist = [[Dlhs,Drhs],[mp1lhs,mp1rhs],[Glhs,Grhs],[mp2lhs,mp2rhs],[GPlhs,GPrhs]] #A list of the

peak locations as ordered pairs for the background.

33:

34: def main(argv):

35: f = np.loadtxt(argv)

36: d = f.transpose()

37:

38: rs = [ ]

39:

40: #Replaces the x-axis with a raman shift from the laser line specified

41: for i in range(len(d[0])):

42: rs.append(shift(laserline,offset,d[0,i]))

43:

44: #Deletes points that vary from the mean by too much

45: def prune(numbers,width,tolerance):

anomalous = np.zeros(len(numbers[0]))

temp = [numbers[1,j] for j in range(i-width,i+width)]

mean = np.median(temp)

variance = np.std(temp)

if numbers[1,i] >= mean+variance*tolerance:

anomalous[i]=1

intensity = [numbers[1,k] for k in range(len(numbers[0]))]

rshift = rs

for l in range(len(rshift)):

if anomalous[l] == 1:
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intensity[l] = ’badpoint’

rs[l] = ’badpoint’

while intensity.count(’badpoint’) != 0:

intensity.remove(’badpoint’)

while rs.count(’badpoint’) !=0:

rs.remove(’badpoint’)

return np.array([rs,intensity],float)

46:

47: processed = prune(d,7,2) #Prunes an array of data of any points "tolerance" standard deviations

away from a rolling mean of radius "width"

48: rs = [processed[0,i] for i in range(len(processed[0]))]

49: processed = prune(processed,7,2)

50: nopeaks = background(processed,peaklist) #See above. Removes the peaks for fitting

51:

52: #Fits the background to a 4th degree polynomial

53: fitted = op.curve fit(polynomial,nopeaks[0],nopeaks[1]) #The output of the curve fit

54: param = fitted[0] #The fitted variables

55:

56: #Makes the plot go from 0 to 1

57: processed[1] = processed[1]-polynomial(processed[0],param[0],param[1],param[2],param[3],param[4])

#Subtracts the background from the main data-set.

58: processed[1] = processed[1]/np.amax(processed[1]) #Normalizes the function

59:

60: #Output

61: dname = ’fullspectrum’+str(laserline)

62: a = os.access(dname,1)

63: if a == False:
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os.mkdir(dname) #Creates a new directory for the output files

64: outputfile = open(dname+’/’+argv.rstrip(’.dat’)+’ ’+dname+’.dat’,’w’)

65:

66: for i in range(len(rs)):

outputfile.write(’%s %s\n’ % (processed[0,i], processed[1,i]))

67:

68: outputfile.close()

69:

70:

71: for filename in sys.argv[1:]:

main(filename)

————- END PYTHON SCRIPT ————-

C.4 LorentzFit.py: Batch-Fitting Curves to Raman Spectra

Before much useful data from Raman spectra can be reliably extracted, each peak in the spectrum

must be fitted to a curve, usually a single Lorentzian. However, since between six and fourteen peaks are

measured per sample, it is highly desirable to automate this peak-fitting process. The LorentzFit.py pro-

gram automatically fits peaks measured by the holographic grating. A similar program could be written for

measurements made by the 600BLZ grating.

————- BEGIN PYTHON SCRIPT ————-

1: #!/usr/bin/env python

2:

3: #By Jonah Miller

4: #This program plots fits Raman peak data to a single-Lorentzian distribution.
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5: #It then plots each peak, allows for confirmation, and then compiles all parameters into

a datafile to be read or plotted later.

6:

7: #Imports the modules needed. sys and os manipulate the filesystem and interact with bash.

8: #Numpy enables array/matrix routines and statistical routines. Scipy contains the optimization

routines.

9: #Matplotlib is for ensuring each fit works by briefly plotting it and showing it to the

user.

10: import sys, os

11: import numpy as np

12: import scipy as sp

13: import matplotlib as mpl

14: import matplotlib.pyplot as plt

15: import scipy.optimize as op

16:

17: #The domain that should be fitted for the G peak and the 2D peak.

18: #Of the form [[Gmin,Gmax],[2Dmin,2Dmax]]

19: ranges = [[1532.3,1592],

[2550,2750]]

20: Yintercept = [-1,-1] #The initial guess for a DC offset of the Lorentzian. Of the form [G

peak guess, 2D peak guess]

21: LinearSlope = [1,0] #The initial guess for a linear slope superimposed on the Lorentzian.

Of the form [G peak guess, 2D peak guess]

22: LorentzianAmplitude = [20,50] #The initial guess for the amplitude of the Lorentzian. Of

the form [G peak guess, 2D peak guess]

23: LorentzianWidth = [12,30] #The initial guess for the width of the Lorentzian. Of the form

[G peak guess, 2D peak guess]
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24:

25: fitparams = [[ ],[ ], [ ],[ ],[ ]] #This will later become a matrix of fitted parameters

26:

27: #Lorentzian function definition

28: def lorentz(x,x0,y0,m,w,A):

return float(y0)+2.*(float(A)/np.pi)*(float(w)/(4.*(x-float(x0))**2+float(w)**2))+(float(m)*x)

29:

30: #The primary routine

31: def main(argv):

32: #Opens the file

33: d = np.loadtxt(argv).transpose()

34:

35: #Makes lists out of the array for certain data analysis purposes

36: xvalues = [d[0,i] for i in range(len(d[0]))]

37: yvalues = [d[1,i] for i in range(len(d[0]))]

38:

39: #Guesses at the possible parameters for a Lorentzian fit and puts them in a list

40: maxi = np.amax(d[1]) #The maximum Raman intensity. Guessed as the center frequency.

41: indi = yvalues.index(maxi) #The index the maximum value is at

42: center = xvalues[indi] #The center of the maximum value. Guessed as the center frequency.

43:

44: segment = [ ]

45:

46: #Uses the center frequency of the Lorentzian peak to decide whether to use the range

for the G peak or for the 2D peak.

47: #Then sets it.

48: if ranges[0][0] < center < ranges[0][1]:
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segment = [d[0,i] for i in range(len(d[0])) if ranges[0][0] < d[0,i] < ranges[0][1]]

yint = Yintercept[0]

slope = LinearSlope[0]

amp = LorentzianAmplitude[0]

width = LorentzianWidth[0]

49: if ranges[1][0] < center < ranges[1][1]:

segment = [d[0,i] for i in range(len(d[0])) if ranges[1][0] < d[0,i] < ranges[1][1]]

yint = Yintercept[1]

slope = LinearSlope[1]

amp = LorentzianAmplitude[1]

width = LorentzianWidth[1]

50: if len(segment)==0: #This is a contingency, in case the center of the peak is not in the

domains defined at the beginning of the program.

segment = [d[0,i] for i in range(len(d[0]))]

yint = (Yintercept[0]+Yintercept[1])/2

slope = (LinearSlope[0]+LinearSlope[1])/2

amp = (LorentzianAmplitude[0]+LorentzianAmplitude[1])/2

width = (LorentzianWidth[0]+LorentzianWidth[1])/2

print ”I don’t know what kind of peak this is, but I’ll do my best to make it work.” #An alert

that something went wrong.

51:

52: #Produces the data to be sent to the curve-fit

53: intensity = [d[1,i] for i in range(len(d[0])) if segment[0] <= d[0,i] <= segment[-1]] #Produces a

y-axis for x-axis segment

54: peak = np.array([segment,intensity]) #Combines the axes into a numpy array

55: guesses = [center,yint,slope,width,amp] #Sets the initial guesses for the fit, p0.

56:
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57: #Fits the peak to a Lorentzian using the set parameters

58: #popt is the optimized parameter set, given in the same order as guesses, pcov is covariance

59: popt, pcov = op.curve fit(lorentz,peak[0],peak[1],p0=guesses,sigma=None)

60:

61: #Generates set of points for the fitted curve

62: segmentfit = np.array(segment) #Makes the x-axis an array so it can be parsed by the function

63: intensityfit = lorentz(segmentfit,popt[0],popt[1],popt[2],popt[3],popt[4])

64: peakfit = [segmentfit,intensityfit]

65:

66: #Generates a plot to compare the original data to the fit curve

67: data = [plt.plot(d[0],d[1],’bo’,ms=2.5,label=’raw data’),plt.plot(peakfit[0],peakfit[1],’r-’,label=’fitted

data’)]

68: plt.xlabel(’Raman Shift (cm−1)’)

69: plt.ylabel(’Intensity (a.u.)’)

70: plt.title(str(argv))

71: plt.show()

72:

73: return popt

74:

75:

76: #The actual operations performed

77: description = raw input(’Sample description? ’) #Notes for the filename

78: fname = description+’ lorentzian peak fits.dat’ #The filename

79:

80: #Generates a list of fitted parameters

81: for filename in sys.argv[1:]:

fitdat = main(filename)
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for i in range(len(fitdat)):

fitparams[i].append(fitdat[i])

82:

83: #Generates statistics on the data

84: fitarray = np.array([fitparams[i] for i in range(len(fitparams))]) #Generates an array of fitparams

in a way that makes them easier to do statistics on

85: means = np.mean(fitarray,1) #The mean values

86: stdevs = np.std(fitarray,1) #The standard deviations

87:

88: #Output

89: with open(fname,’w’) as f:

f.write(’#Center-Frequency DC-Offset linear-Slope Peak-Width Peak-Amplitude – Last rows are mean

values and standard deviations\n’)

for i in range(len(fitparams[0])):

f.write(’{0:17} {1:17} {2:17} {3:17} {4:17}\n’.format(fitparams[0][i],fitparams[1][i],fitparams[2][i],fitparams[3][i],

fitparams[4][i]).rjust(17))

f.write(’{0:17} {1:17} {2:17} {3:17} {4:17}\n’.format(means[0], means[1], means[2], means[3], means[4]).rjust(17))

f.write(’{0:17} {1:17} {2:17} {3:17} {4:17}’.format(stdevs[0], stdevs[1], stdevs[2], stdevs[3], stdevs[4]).rjust(17))

————- END PYTHON SCRIPT ————-
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