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surfaces don’t necessarily agree!
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• Euclidean arc length and the Frenet equations

• Affine arc length

• The affine first fundamental form

• Two notions of arc length!

• Main theorem

• Examples



A story of a land where distances for curves and distances for
surfaces don’t necessarily agree!

Outline

• Definition of Euclidean and equiaffine spaces

• Euclidean arc length and the Frenet equations

• Affine arc length

• The affine first fundamental form

• Two notions of arc length!

• Main theorem

• Examples



A story of a land where distances for curves and distances for
surfaces don’t necessarily agree!

Outline

• Definition of Euclidean and equiaffine spaces

• Euclidean arc length and the Frenet equations

• Affine arc length

• The affine first fundamental form

• Two notions of arc length!

• Main theorem

• Examples



A story of a land where distances for curves and distances for
surfaces don’t necessarily agree!

Outline

• Definition of Euclidean and equiaffine spaces

• Euclidean arc length and the Frenet equations

• Affine arc length

• The affine first fundamental form

• Two notions of arc length!

• Main theorem

• Examples



A story of a land where distances for curves and distances for
surfaces don’t necessarily agree!

Outline

• Definition of Euclidean and equiaffine spaces

• Euclidean arc length and the Frenet equations

• Affine arc length

• The affine first fundamental form

• Two notions of arc length!

• Main theorem

• Examples



A story of a land where distances for curves and distances for
surfaces don’t necessarily agree!

Outline

• Definition of Euclidean and equiaffine spaces

• Euclidean arc length and the Frenet equations

• Affine arc length

• The affine first fundamental form

• Two notions of arc length!

• Main theorem

• Examples



A story of a land where distances for curves and distances for
surfaces don’t necessarily agree!

Outline

• Definition of Euclidean and equiaffine spaces

• Euclidean arc length and the Frenet equations

• Affine arc length

• The affine first fundamental form

• Two notions of arc length!

• Main theorem

• Examples



A story of a land where distances for curves and distances for
surfaces don’t necessarily agree!

Outline

• Definition of Euclidean and equiaffine spaces

• Euclidean arc length and the Frenet equations

• Affine arc length

• The affine first fundamental form

• Two notions of arc length!

• Main theorem

• Examples



Euclidean space E3 is the vector space R3 together with an
inner product 〈, 〉 which is defined on all tangent vectors v,w to
all points x ∈ R3.

The symmetry group E(3) of E3 consists of all maps
φ : E3 → E3 of the form

φ(x) = Ax + b,

where A ∈ SO(3) (or O(3)) and b ∈ R3.

These are precisely the maps that preserve the inner product: if
v,w ∈ TxE3, then

〈φ∗(v), φ∗(w)〉 = 〈Av, Aw〉 = 〈v,w〉.
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All metric notions for submanifolds of E3 are defined in terms of
this inner product:

• If α : I → E3 is a regular curve, then the arc length
function along α is

s̄(t) =

∫ t

0

√
〈α′(σ), α′(σ)〉 dσ.

• If Σ ⊂ E3 is a regular surface, then the first fundamental
form of Σ is defined for any tangent vector v to Σ as

IEuc(v) = 〈v,v〉.
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Equiaffine space (or, more simply, affine space) A3 is the vector
space R3 together with a volume form dV : Λ3(R3)→ R.

dV (v1,v2,v3) = det ([v1,v2,v3]) .

The symmetry group A(3) of A3 consists of all maps
φ : A3 → A3 of the form

φ(x) = Ax + b,

where A ∈ SL(3) and b ∈ R3.
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This means that the volume of parallelpipeds is preserved, but
the overall length of and angle between vectors doesn’t have to
be.



Given two points on a surface, we can apply an affine
transformation to change the Euclidean distance between the
two points.



There is no inner product on A3 that is preserved by the action
of A(3) on A3, and so the Euclidean metric notions don’t
generalize to curves and surfaces A3 in any obvious way.

However, certain aspects of these notions can be generalized to
the affine setting.



There is no inner product on A3 that is preserved by the action
of A(3) on A3, and so the Euclidean metric notions don’t
generalize to curves and surfaces A3 in any obvious way.

However, certain aspects of these notions can be generalized to
the affine setting.



Affine arc length for curves in A3

If α is a nondegenerate curve in E3 (i.e., if the vectors
α′(t), α′′(t) are linearly independent for all t), then we can
associate to each point of α the Frenet frame (e1, e2, e3) defined
by:

e1(t) =
α′(t)

‖α′(t)‖ , e2(t) =
e′1(t)

‖e′1(t)‖ , e3(t) = e1(t)× e2(t),

where for any vector v, ‖v‖ =
√
〈v,v〉.



The Frenet frame is a set of orthonormal basis vectors which
completely describe a curve up to rigid motion. It allows us
dispense with a generalized coordinate system.
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Key properties of the Frenet frame:

• It is invariant under the action of E(3): if φ ∈ E(3) and
(e1, e2, e3) is the Frenet frame associated to a curve α, then
(φ∗(e1), φ∗(e2), φ∗(e3)) is the Frenet frame associated to
φ(α).

• It is constructed from the derivatives of α: the vectors
e1(t), e2(t) are obtained by applying the Gram-Schmidt
orthogonalization process to α′(t), α′′(t), and then e3(t) is
the unique vector that makes (e1, e2, e3) an oriented
orthonormal basis for E3.

• The matrix A whose columns are the Frenet vectors
(e1, e2, e3) is an element of SO(3).
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The arc length function s̄(t) provides an “ideal”
parametrization for a nondegenerate curve α in E3: if we let
t(s̄) denote the inverse function for s̄(t) and reparametrize α as

α(s̄) = α(t(s̄)),

then the Frenet frame of α is simply:

e1(s̄) = α′(s̄), e2(s̄) =
α′′(s̄)

‖α′′(s̄)‖ , e3(s̄) = e1(s̄)× e2(s̄).



The κ(s̄) and torsion τ(s̄) of α are defined by the Frenet
equations:

e′1(s̄) = κ(s̄) e2(s̄)

e′2(s̄) = −κ(s̄) e1(s̄) + τ(s̄) e3(s̄)

e′3(s̄) = −τ(s̄) e2(s̄).



Now suppose that α(t) is a curve in A3. What would be the
right analog for the Frenet frame for α?

Ideally it should be a trio of vectors (e1, e2, e3) with the
properties that:

• It should be invariant under the action of A(3).

• It should be constructed from the derivatives of α.

• The matrix A whose columns are the frame vectors
(e1, e2, e3) should be an element of SL(3).
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Since there are no notions of length or inner product for
tangent vectors in A3, we might start by simply choosing

ē1(t) = α′(t), ē2(t) = α′′(t), ē3(t) = α′′′(t).

These vectors satisfy the first two conditions above, but not
necessarily the third.

The easiest way to remedy this issue is to scale all three vectors
simultaneously. This suggests the following definitions:
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• A regular curve α : I → A3 is called nondegenerate if the
vectors α′(t), α′′(t), α′′′(t) are linearly independent for all
t ∈ I.

• The affine Frenet frame for α is the trio of vectors
(e1, e2, e3) defined by

e1(t) =
α′(t)

3
√

det[α′(t) α′′(t) α′′′(t)]
,

e2(t) =
α′′(t)

3
√

det[α′(t) α′′(t) α′′′(t)]
,

e3(t) =
α′′′(t)

3
√

det[α′(t) α′′(t) α′′′(t)]
.
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By analogy with the Euclidean case, an optimal parametrization
for α would be given by a function sα(t) with the property that

det[α′(sα) α′′(sα) α′′′(sα)] ≡ 1,

so that we could simply define

e1(sα) = α′(sα), e2(sα) = α′′(sα), e3(sα) = α′′′(sα).

This function sα(t) is called the affine arc length function along
α, and it is given by

sα(t) =

∫ t

0

6
√

det[α′(σ) α′′(σ) α′′′(σ)] dσ.
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Affine arc length is a very different notion from Euclidean arc
length. Some of the differences include:

• Unlike Euclidean arc length, which depends only on the
first derivative of α, the affine arc length depends on the
first three derivatives of α. In general, this number is
dependent on the dimension of the ambient affine space:
the affine arc length of a curve α : I → An depends on the
first n derivatives of α.

• The affine arc length is only nonzero for nondegenerate
curves; so for instance, any curve contained in a plane in
A3 has affine arc length zero according to this definition. It
may, however, have nonzero affine arc length when
regarded as a curve in A2.
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What does the affine arc length really mean?

Proposition 1: Let α : I → R3 be a nondegenerate curve (in
the affine sense). Let s̄(t), κ(t), τ(t) be the Euclidean arc
length, curvature, and torsion of α, respectively, and suppose
that τ(t) > 0. Then the affine arc length sα(t) of α is given by

sα(t) =

∫ t

0

6
√
κ(σ)2 τ(σ) s̄′(σ) dσ.

In particular, if α is parametrized by its Euclidean arc length s̄,
then

sα(s̄) =

∫ s̄

0

6
√
κ(σ)2 τ(σ) dσ.
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Although the Euclidean quantities κ(t), τ(t), s̄(t) are not
individually preserved by the action of the equiaffine group, this
proposition yields the following corollary:

Corollary: The Euclidean 1-form dsα =
6
√
κ2τ ds̄ associated to

a nondegenerate curve α : I → R3 is invariant under the action
of the equiaffine group.
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Affine first fundamental form for surfaces in A3

If Σ ⊂ E3 is a regular surface with parametrization
X : R2 → E3, then the first fundamental form of Σ is given by

IEuc = E du2 + 2F du dv +Gdv2,

where E = 〈Xu, Xu〉, F = 〈Xu, Xv〉, G = 〈Xv, Xv〉.

IEuc is a quadratic form on each tangent plane TxΣ that
expresses the Euclidean metric on TxΣ with respect to the basis
(Xu, Xv).
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Key properties of the first fundamental form:

• It is a positive definite quadratic form on each tangent
space TxΣ.

• It is invariant under the action of E(3).

• It is constructed from derivatives of X.

• It is invariant under reparametrizations of Σ: if
X̄(ū, v̄) = X(u(ū, v̄), v(ū, v̄)), then

IEuc = Ē dū2 + 2F̄ dū dv̄ + Ḡ dv̄2

= E du2 + 2F du dv +Gdv2.
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We also associate to Σ the second fundamental form, which
measures the curvature of Σ.



We write the second fundamental form as

IIEuc = e du2 + 2f du dv + g dv2,

where

e = 〈Xuu, N〉, f = 〈Xuv, N〉, g = 〈Xvv, N〉,

and N is a unit normal vector field to Σ.

The second fundamental form encapsulates the curvature
properties of the surface; in particular, the Gauss curvature of
the surface is

K =
det(IIEuc)

det(IEuc)
=

eg − f2

EG− F 2
.

IIEuc is not necessarily positive definite, but otherwise it shares
the same key properties as IEuc.
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Now let Σ ⊂ A3 be a regular surface with parametrization
X : U → A3. Can we find an analog for the Euclidean first
fundamental form which is invariant under the action of the
equiaffine group?

Ideally it should be a quadratic form on each tangent space TxΣ
with the properties that:

• It should be invariant under the action of A(3).

• It should be constructed from the derivatives of X.

• It should be invariant under reparametrizations of Σ.
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The quadratic form satisfying these conditions is called the
affine first fundamental form Iaff, and it is constructed as
follows: set

` = det[Xu Xv Xuu],

m = det[Xu Xv Xuv],

n = det[Xu Xv Xvv],

and define

Iaff = |`n−m2|−1/4(` du2 + 2mdudv + ndv2).

Since Iaff is a quadratic form, it can be used to define a metric
on the surface Σ. Unlike in the Euclidean case, this metric is
not necessarily positive definite; it may be positive or negative
definite, or indefinite.
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This suggests the following definitions:

• A regular surface Σ with parametrization X : R2 → A3 is
called nondegenerate if the quadratic form
` du2 + 2mdudv + ndv2 is nondegenerate (i.e., if
`n−m2 6= 0).

• A nondegenerate parametrized surface is called elliptic if
the quadratic form Iaff is definite and hyperbolic if Iaff is
indefinite.
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What does the affine first fundamental form really
mean?

Proposition 2: Let X : R2 → R3 be a regular parametrization
for a nondegenerate surface Σ. Let IIEuc denote the Euclidean
second fundamental form of Σ, and let K denote the Euclidean
Gauss curvature of Σ. Then

Iaff = |K|−1/4IIEuc.

Corollary: The Euclidean quadratic form |K|−1/4IIEuc

associated to a nondegenerate surface Σ ⊂ R3 is invariant under
the action of the equiaffine group.
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Curves in surfaces: two notions of arc length!

Now suppose that α : I → A3 is a curve whose image is
contained in a nondegenerate surface Σ = X(R2) ⊂ A3.

The restriction of Iaff to α defines an arc length function sΣ

along α, as follows:

sΣ(t) =

∫ t

0

√
Iaff(α′(σ)) dσ.

We will refer to the function sΣ on α as the “induced arc
length” function from Σ.

Although the affine arc length sα and the induced arc length sΣ

are both “metric functions” along α, they may or may not
agree, even for fairly trivial examples.
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Example 1: Let Σ ⊂ R3 be the unit sphere, with the
parametrization

X(u, v) = [cos(u) cos(v), sin(u) cos(v), sin(v)] .

Regarded as a surface in E3, Σ has uniform Gauss curvature
K = 1 and second fundamental form

IIEuc = cos2(v)du2 + dv2 = IEuc.

Therefore the affine first fundamental form of Σ is

Iaff = |K−1/4| IIEuc = cos2(v)du2 + dv2 = IEuc.
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Example 1a: Let α be the great circle

α(t) = X(t, 0) = [cos(t), sin(t), 0].

Because Σ has the property that IIEuc = IEuc, the induced arc
length function sΣ(t) agrees with the Euclidean arc length
function s̄(t); therefore,

sΣ(t) = t.

But because α is contained in a plane, it is degenerate as a
curve in A3 and its affine arc length function sα(t) is identically
equal to zero.
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Example 1b: Let α be the “spherical helix” curve

α(t) = X(8t, t) = [cos(8t) cos(t), sin(8t) cos(t), sin(t)].

As in the previous example, the induced arc length function
sΣ(t) is equal to the Euclidean arc length function

sΣ(t) =

∫ t

0

√
1 + 64 cos2(σ) dσ,

while the affine arc length function sα(t) is

sα(t) =

∫ t

0

6
√

48 cos(σ)(43 + 672 cos2(σ)) dσ.
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The two arc length functions are qualitatively similar, although
their integrands are noticeably different:



Question: Which nondegenerate curves α in a nondegenerate
surface Σ have the property that the two arc length functions
sα(t), sΣ(t) are equal? We will call a curve with this property
commensurate.

Theorem: Let X : U → R3 be a regular parametrization for a
nondegenerate surface Σ, and let α : I → R3 be a regular,
nondegenerate curve contained in Σ. Then α is a commensurate
curve if and only if, for all t ∈ I,

det
[
α′(t) α′′(t) α′′′(t)

]
=
[
Iaff(α′(t))

]3
. (1)
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Corollary 1: Let X : U → R3 be a regular parametrization for
a nondegenerate surface Σ, and let α : I → R3 be a regular,
nondegenerate curve contained in Σ. Then α is a commensurate
curve if and only if, for all t ∈ I,

κ(t)2τ(t) =
(
|K(t)|−1/4kn(t)

)3
,

where

• κ(t), τ(t) are the Euclidean curvature and torsion functions
of α;

• K(t) is the Gauss curvature of Σ at the point α(t);

• kn(t) is the normal curvature of Σ at the point α(t) in the
direction of α′(t).



How plentiful are commensurate curves?

Corollary 2: Let X : U → R3 be a regular parametrization for
a nondegenerate surface Σ. Given any point x ∈ Σ and any
tangent vector v ∈ TxΣ for which Iaff(v) 6= 0, there exists a
1-parameter family of commensurate curves α in Σ such that
α(0) = x and α′(0) = v.
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Proof: Let x = X(u0, v0) and v = aXu + bXv. We can write

α(t) = X(u(t), v(t))

for some smooth functions u(t), v(t).

The condition (1) is invariant under reparametrizations of α, so
without loss of generality we may assume (locally) that
u(t) = u0 + at, and therefore

α(t) = X(u0 + at, v(t)).

Equation (1) then becomes a 3rd-order nonlinear ODE for the
function v(t).
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For t = 0, we have

α(0) = X(u0, v(0)), α′(0) = aXu + v′(0)Xv.

So the conditions α(0) = x, α′(0) = v are equivalent to the
initial conditions

v(0) = v0, v′(0) = b

for the function v(t).

The local existence/uniqueness theorem for ODEs guarantees
that for any real number c, there exists a unique local solution
to (1) with

v(0) = v0, v′(0) = b, v′′(0) = c.



For t = 0, we have

α(0) = X(u0, v(0)), α′(0) = aXu + v′(0)Xv.

So the conditions α(0) = x, α′(0) = v are equivalent to the
initial conditions

v(0) = v0, v′(0) = b

for the function v(t).

The local existence/uniqueness theorem for ODEs guarantees
that for any real number c, there exists a unique local solution
to (1) with

v(0) = v0, v′(0) = b, v′′(0) = c.



For example, if we set u0 = 0, a = 1, so that

α(t) = X(t, v(t)),

then equation (1) becomes:

det

[
d

dt
X(t, v(t))

d2

dt2
X(t, v(t))

d3

dt3
X(t, v(t))

]

=

[
Iaff

(
d

dt
X(t, v(t))

)]3

.



Example 1c: Let Σ ⊂ R3 be the unit sphere, and let α be a
commensurate curve on Σ. For simplicity, assume that α is
parametrized by its Euclidean arc length s̄.

Since all normal curvatures on Σ are equal to 1, Corollary 1
implies that the curve α(s̄) on Σ is commensurate if and only if
its curvature and torsion satisfy

κ(s̄)2τ(s̄) ≡ 1.

Moreover, the fact that α lies on the unit sphere implies that(
1

κ(s̄)

)2

+

(
1

τ(s̄)

d

ds

(
1

κ(s̄)

))2

= 1.
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Together, these two equations imply that κ(s̄) satisfies the ODE

(κ′(s̄))2 =
κ(s̄)2 − 1

κ(s̄)2
.

The general solution of this equation is

κ(s̄) = ±
√

(s̄+ c)2 + 1.

Since κ(s̄) is assumed to be positive and s̄ is only well-defined
up to an additive constant, we may assume without loss of
generality that

κ(s̄) =
√
s̄2 + 1,

and then we have

τ(s̄) =
1

s̄2 + 1
.
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Unfortunately the corresponding Frenet equations cannot be
integrated analytically, but we can integrate them numerically:

Every other commensurate curve on the sphere can be obtained
by rotating and translating this one.
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This is a rather interesting curve! The geodesic curvature κg(s̄)
function of a curve in a regular surface Σ ⊂ R3 is defined by the
condition that

κ2 = κ2
g + k2

n.

Since all normal curvatures on the sphere are equal to 1 and
κ(s̄) =

√
s̄2 + 1, this curve has geodesic curvature function

κg(s̄) = s.



This is a rather interesting curve! The geodesic curvature κg(s̄)
function of a curve in a regular surface Σ ⊂ R3 is defined by the
condition that

κ2 = κ2
g + k2

n.

Since all normal curvatures on the sphere are equal to 1 and
κ(s̄) =

√
s̄2 + 1, this curve has geodesic curvature function

κg(s̄) = s.



Thus we may regard the commensurate curves on the sphere as
spherical analogs of plane curves with curvature function

κ(s̄) = s.



These plane curves are called Euler spirals or clothoid curves,
and they have a long and interesting history, appearing:

• first as the solution to an elasticity problem posed in 1694
by James Bernoulli;

• again in work of Augustin Fresnel in 1816 regarding the
problem of light diffracting through a slit;

• yet again in work of Arthur Talbot in 1901 related to
designing railroad tracks so as to provide as smooth a
riding experience as possible.
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More examples:

We compute examples of commensurate curves on various
surfaces as follows: we assume that the curve is parametrized as

α(t) = X(u(t), v(t)),

where
u′(t) = cos(θ(t)), v′(t) = sin(θ(t)) (2)

for some unknown function θ(t).



Then, for a given parametrization X(u, v) of Σ, the equation

det
[
α′(t) α′′(t) α′′′(t)

]
=
[
Iaff(α′(t))

]3
,

for commensurate curves becomes a second-order ODE for the
function θ(t), with coefficients depending on the functions
u(t), v(t).

We numerically solve the system consisting of this ODE
together with equations (2) for various choices of initial
conditions in order to generate the curves in the following
examples.



Example 2: The paraboloid

X(u, v) =
[
v cos(u), v sin(u), v2

]



Example 3: The hyperbolic paraboloid

X(u, v) = [u, v, uv]



Example 4: The hyperboloid

X(u, v) = [cos(u)− v sin(u), sin(u) + v cos(u), v]



Example 5: The helicoid

X(u, v) = [u cos(v), u sin(v), v]


