Mathematics / Physics / Science And Math

A Retraction: Backwards Heat is Not Chaotic

Airplane_vortex_edit

Yesterday I wrote a post that explored the flow of heat both forwards and backwards in time. I used this as a venue to introduce the notion of entropy and to describe one extreme example of the butterfly effect—where small changes in initial data can create big changes in the final result. That’s all fine and good and I stand by that. But I said that the reverse heat equation, which runs the flow of heat backwards in time, was an example of chaos. And as this reddit user points out, this is very wrong. I have now fixed the

Mathematics / Physics / Science And Math

Heat, Chaos, and Predictability

A funny comic about the butterfly effect

The butterfly effect, shown comically in figure 1, is the idea that a very small change in one place on Earth can cause a very big change somewhere else. In this case, a butterfly flaps its wings and causes a tornado. This metaphor illustrates the mathematical concept of chaos, in which the Earth’s atmosphere is a chaotic system. While a single butterfly probably isn’t literally responsible for a tornado, mathematical chaos is very real and important. So this week, I’m going to try giving you some intuition for the butterfly effect using one extreme example from physics. Heat Suppose

Geometry / Physics / Relativity / etc.

In-Falling Geodesics in Our Local Spacetime

spacetime!

My previous post was a description of the shape of spacetime around the Earth. I framed the discussion by asking what happens when I drop a ball from rest above the surface of the Earth. Spacetime is curved. And the ball takes the straightest possible path through spacetime. So what does that look like? Last time I generated a representation of the spacetime to illustrate. However, I generated some confusion by claiming that it “should be obvious” that the straightest possible path is curved towards or away from the Earth. When a textbook author says “the proof is trivial”

Geometry / Physics / Relativity / etc.

Our Local Spacetime

Gravity Probe B circling Earth

General relativity tells us that mass (and energy) bend spacetime. And when people visualize the effect of a planet on spacetime, they usually imagine something like in figure 1, where the planet creates a “dip” in spacetime much like a “gravitational well.” But today I’m going to show you what spacetime actually looks like near a planet… and it doesn’t look anything like the common picture. This is the fifth part in my many-part series on general relativity. Here are the first four parts: Galileo almost discovered general relativity General relativity is the dynamics of distance General relativity is